#### **IPD Meta-Analysis for Prognosis Research**

#### **Professor Richard Riley**

Professor of Biostatistics School of Medicine, Keele University, UK.

E-mail: r.riley@keele.ac.uk

Twitter: @Richard\_D\_Riley

www.ipdma.co.uk

@Richard\_D\_Riley

# Aims of this talk

- Introduce the concepts of meta-analysis & the use of IPD
- Rationale for embarking on an IPD meta-analysis project, rather than a traditional meta-analysis of aggregate data
- Advantages & challenges
- Notable examples
- Power (if time)

Part 1:

# Traditional systematic review & meta-analysis framework using aggregate data

www.ipdma.co.uk

@Richard\_D\_Riley

- Traditional systematic reviews & meta-analyses use aggregate data
- Obtainable (extracted) from study publications or study authors

e.g. reviews of randomised trials evaluating a treatment effect will extract information about participant characteristics (e.g. mean age, proportion female), study design and analysis methods, outcomes (e.g. proportion who died in each group) and key results such as:

an estimate of the treatment effect

e.g. odds ratio, relative risk, hazard ratio etc

the standard error (or variance/95% CI) of this estimate

e.g. standard error of log hazard ratio

• Example of aggregate data from 10 randomised trials evaluating the effect of anti-hypertensive treatment

| Trial<br>ID                                  | Number of participants |           | Mean age<br>(years) |           | Mean SBP before<br>treatment<br>(mmHg) |           | Mean SBP at 1 year<br>(mmHg) |           | Treatment effect on SBP<br>at 1 year adjusted for<br>baseline<br>(treatment minus<br>control) |  |
|----------------------------------------------|------------------------|-----------|---------------------|-----------|----------------------------------------|-----------|------------------------------|-----------|-----------------------------------------------------------------------------------------------|--|
|                                              | Control                | Treatment | Control             | Treatment | Control                                | Treatment | Control                      | Treatment | Estimate (variance)                                                                           |  |
| 1                                            | 750                    | 704       | 42.36               | 42.17     | 153.05                                 | 153.88    | 139.75                       | 132.54    | -6.53 (0.75)                                                                                  |  |
| 2                                            | 199                    | 138       | 69.57               | 69.71     | 191.55                                 | 188.30    | 179.89                       | 164.67    | -13.81 (4.95)                                                                                 |  |
| (rows for trials 3 to 9 omitted for brevity) |                        |           |                     |           |                                        |           |                              |           |                                                                                               |  |
| 10                                           | 2297                   | 2398      | 70.21               | 70.26     | 173.94                                 | 173.75    | 165.24                       | 154.87    | -10.26 (0.20)                                                                                 |  |

#### Advantages:

- Aggregate data 'simply' needs extracting (**quick** in theory, if studies are clearly and completely reported)
- Relatively **cheap** (compared to new trial; no new data collection)
- Meta-analysis methods well established:

- such as inverse-variance common-effect or randomeffects models (more later)

- Software suitable: e.g. RevMan, metafor in R, (ad)metan in Stata
- Leads to nice graphical displays such as forest plots

#### **Example: meta-analysis of 10 hypertension trials**



#### **Disadvantages**:

- Reliant on reporting of published articles
- Often face poor reporting (e.g. p-values rather than estimates)
- Not in control of the statistical analysis method used
  - Inconsistency in choice of effect (hazard ratio, odds ratio, etc.)
  - Inconsistent or no adjustment for prognostic factors
  - Complexities ignored (e.g. clustering, non-proportional hazards, nonlinear relationships) etc
- Vulnerable to publication bias: studies with significant results more likely to be published (or reported well) than non-significant studies
- Vulnerable to outcome reporting bias studies report only those outcomes that were significant or most interesting

#### **Disadvantages**:

- Going beyond original analyses is very hard (often impossible), e.g. couldn't examine proportional hazards, develop a prediction model, etc
- Aggregate data collapses participant-level information
  - Observe study-level summaries, such as mean age, proportion male, overall treatment effect

#### Loses power to explain participant-level variation

- Cannot adjust for prognostic factors
- Cannot identify subgroup results, treatment-covariate interactions (effect modifiers), etc.

i.e. can't examine whether some patients do better than others

**Part 2**:

# IPD meta-analysis: rationale & advantages

www.ipdma.co.uk

@Richard\_D\_Riley

# **Call for IPD meta-analysis**

IPD: Individual Patient Data, Individual Participant Data (the latter is now being adopted, as more inclusive)

- The original, raw individual-level data from the primary studies identified by the review
- The original source material, from which aggregate data are derived

#### IPD meta-analysis:

The synthesis (in a statistical model) of the IPD from multiple studies for the purpose of summarising the evidence

 Increasingly relevant with the advent of 'stratified medicine' – the tailoring of treatment decisions for individual patients

#### Number of IPD meta-analysis articles over time (Riley, Tierney, Stewart. 2021)



# Example: IPD from multiple trials, merged into a single dataset ready for meta-analysis

| Trial<br>ID | Participant<br>ID | Treatment<br>group,<br>1 = treatment | Age<br>(years) | SBP before<br>treatment<br>(mmHg) | SBP at 1<br>year<br>(mmHg) |  |
|-------------|-------------------|--------------------------------------|----------------|-----------------------------------|----------------------------|--|
|             |                   | 0 = control                          |                | (8)                               | (8/                        |  |
| 1           | 1                 | 1                                    | 46             | 137                               | 111                        |  |
| 1           | 2                 | 1                                    | 35             | 143                               | 133                        |  |
|             | (other            | rows for trial 1 of                  | mitted for     | brevity)                          |                            |  |
| 1           | 1454              | 0                                    | 62             | 209                               | 219                        |  |
|             |                   |                                      |                |                                   |                            |  |
| 2           | 1                 | 0                                    | 55             | 170                               | 155                        |  |
| 2           | 2                 | 1                                    | 38             | 144                               | 139                        |  |
|             | (other            | rows for trial 2 of                  | mitted for     | brevity)                          |                            |  |
| 2           | 337               | 1                                    | 44             | 153                               | 129                        |  |
|             |                   |                                      |                |                                   |                            |  |
|             | (rows             | for trials 3 to 9 or                 | mitted for     | brevity)                          |                            |  |
| 10          | 1                 | 0                                    | 71             | 149                               | 128                        |  |
| 10          | 2                 | 1                                    | 59             | 168                               | 169                        |  |
|             | (other            | rows for trial 10 c                  | omitted for    | brevity)                          |                            |  |
| 10          | 4695              | 0                                    | 63             | 174                               | 128                        |  |

# Example: IPD from multiple cancer prognosis studies merged ready for meta-analysis

|       |         | Marker levels |     |      | Adjustment<br>factors |       | Survival & disease status |                           |                            |
|-------|---------|---------------|-----|------|-----------------------|-------|---------------------------|---------------------------|----------------------------|
| study | Patient | ΤH            | LDH | MYCN | Age                   | Stage | Time of recurrence        | Final<br>survival<br>time | Final<br>disease<br>status |
| 1     | 1       | Pos           | 200 | 5    | 3 yrs                 | 1     | -                         | 150<br>days               | ALIVE                      |
| 1     | 2       | Neg           | 350 | 3    | 2 yrs                 | 4     | 330 days                  | 390<br>days               | DEAD                       |
| 1     | 3       | Neg           | 120 | 1    | 2 yrs                 | 3     | 230 days                  | 250<br>days               | ALIVE<br>with<br>disease   |
| 2     | 1       | Neg           | 320 | 1    | 6 yrs                 | 4     | 27 days                   | 48 days                   | DEAD                       |
|       |         |               |     |      |                       |       |                           |                           |                            |

- Use consistent inclusion and exclusion criteria across studies, and if appropriate reinstate individuals into the analysis who were originally excluded
- Observe and account for missing data at the individual-level
- Verify results presented in the original study publications (assuming IPD provided can be matched to that IPD used in the original analyses)
- Inform risk of bias assessments: for example, in regard to whether groups were balanced at baseline

- Use up-to-date follow-up information
  - potentially longer than that used in the original study publications
- Identify studies which contain the same or overlapping sets of participants
- Calculate and incorporate results for those missing or poorly reported outcomes and summary statistics across published studies
  - may reduce the problem of selective within-study reporting (e.g. of outcomes)
- Calculate and incorporate results for unpublished studies
  - may thus reduce the problem of publication bias

- Standardise the strategy of statistical analysis across studies
  - e.g. the analysis method, how continuous variables are analysed, etc.)
  - use more appropriate/advanced methods than primary studies where necessary
- Assess model assumptions in each study
  - e.g. proportional hazards in Cox regression model
- Produce estimates adjusted for prognostic factors
  - may increase power, reduce heterogeneity & allows conditional treatment effects
- Adjust for a more consistent set of prognostic factors across studies

- Obtain meta-analysis results for specific subgroups of participants, and assess differential (treatment) effects across individuals
  - this facilitates individualised or stratified medicine
- Examine and compare accuracy of tests at multiple thresholds
- Generate and validate prognostic/prediction models (risk scores), and examine multiple individual-level factors in combination

   e.g. multiple biomarkers and genetic factors, and their interaction
- Account for the correlation between multiple endpoints
  - a meta-analysis of longitudinal data where each participant provides results at multiple time-points



# IPD meta-analysis projects for prognosis research: notable examples

www.ipdma.co.uk

@Richard\_D\_Riley

# Identification of a subgroup effect

- The Early Breast Cancer Trialists' Collaborative Group obtained IPD from 55 trials, including 37000 women with early stage breast cancer.
- Examined whether the benefit of adjuvant tamoxifen varied according to oestrogen receptor (ER) status.
- Strong evidence of a larger treatment effect for the ER positive group.



## **Non-linear relationships**

- Wang et al., and then Riley et al., use IPD from 10 randomized trials to examine whether the effect of anti-hypertensive treatment differs according to age.
- IPD allows non-linear interaction to be examined compared to those aged 55, younger patients benefit less than older benefits



Wang JG, Staessen JA, Franklin SS, et al. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension 2005;45(5):907-13

Riley RD, Debray TPA, Fisher D, et al. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning. Stat Med 2020;39(15):2115-37 2

#### Test accuracy at multiple thresholds

- For continuous tests, different studies (selectively) report results at different thresholds
- This leads to different studies per threshold
- IPD allows any threshold to be examined in all studies and a proper ROC curve to be constructed

Figure based on:

Levis B,, et al. Selective Cutoff Reporting in Studies of Diagnostic Test Accuracy: A Comparison of Conventional and Individual-Patient-Data Meta-Analyses of the Patient Health Questionnaire-9 Depression Screening Tool. *Am J Epidemiol* 2017;185(10):954-64

The points shown correspond to PHQ-9 threshold values of 7 to 15, from right to left.



## **Added Prognostic Value**

- IPD meta-analysis of IPD from 17 published and unpublished studies, involving a total of 3200 participants in non-small-cell lung carcinoma
- Is microvessel density (MVD) a prognostic factor for death?
- IPD enabled results by measurement method (here, all vessels method), adjustment for age and stage of disease, & analysis of continuous scale
- Results contradict an earlier meta-analysis using published aggregate data that concluded MVD was a prognostic effect

Trivella M, Pezzella F, Pastorino U, et al. Microvessel density as a prognostic factor in non-small-cell lung carcinoma: a meta-analysis of individual patient data. *Lancet Oncology* 2007;8(6):488-99



#### Validate & compare prediction models in multiple settings



Riley RD, et al. *BMJ* 2016;353:i3140

Calibration slope

#### **Part 4:**

# Setting up IPD meta-analysis projects: key steps

www.ipdma.co.uk

@Richard\_D\_Riley

#### **Do I need IPD for meta-analysis?**

#### Decision process for IPD approach:

- What is the research question?
- Has a previous review been done before to answer this question?
- What aggregate data are required to answer the question?
- Are such aggregate data available in the majority of studies?
- If not, will availability of IPD allow them to be calculated?
- How much IPD can I realistically obtain? Is it of sufficient power?
- How long will it take to obtain it?
- Do I have the resources for obtaining, collating, checking and managing large sets of IPD?
- Do I have statistical expertise and software to analyse the IPD?

**Aided by:** collaborating groups, different disciplines working together, leaders in the field being involved – & of course funding

#### Planning an IPD meta-analysis project?

- When IPD meta-analysis projects are needed, the available IPD needs to:
  - be of sufficient quality
  - record the required participant-level characteristics
  - record outcomes of interest
  - have reasonable statistical power to address the research question(s)
- Careful planning & preparatory work is needed to ensure achievable
- IPD meta-analyses are major research projects
  - typically take upwards of two years to complete
  - require specific research funding

- require broader skills than conventional systematic reviews, including greater statistical expertise and experience in managing participant-level data.

# Warning: Obtaining & checking IPD can be painful!

BMJ 2013;347:f6927 doi: 10.1136/bmj.f6927 (Published 2 December 2013)

Page 1 of 2

#### **VIEWS & REVIEWS**

#### **OPEN DATA CAMPAIGN**

# Why did it take 19 months to retrieve clinical trial data from a non-profit organisation?

Asbjørn Hróbjartsson The Nordic Cochrane Centre, Copenhagen, Denmark

The emails we received during the prolonged exchange were all friendly, and the individuals involved were helpful and understood the need for data sharing, but they were hampered by inflexible, formalistic, and slow bureaucratic procedures. Since our first inquiry we communicated with four people, sent 25 emails, filled in four data use agreement forms, and waited one year and seven months.

## Is your IPD project worth the effect?

• e.g. in a two-stage IPD meta-analysis, the variance of the pooled interaction ( $\lambda$ ) is

$$\operatorname{var}(\hat{\lambda}) = \left(\sum_{i=1}^{k} \frac{n_i \sigma_{zi}^2}{4\sigma_i^2}\right)^{-1}$$

- Studies with a larger sample size  $(n_i)$ , larger variability  $(\sigma_{zi}^2)$  in the covariate and smaller residual variances  $(\sigma_i^2)$  will have larger power
- Can extract this information from trial publications

Riley RD, Debray TPA et al. Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: Statistical recommendations for conduct and planning. *Stat Med* 2020;39(15):2115-37

• Assuming no heterogeneity in interaction, power is:

$$= \Phi\left(-1.96 + \lambda \sqrt{\sum_{i=1}^{k} \frac{n_i \sigma_{zi}^2}{4\sigma_i^2}}\right) + \Phi\left(-1.96 - \lambda \sqrt{\sum_{i=1}^{k} \frac{n_i \sigma_{zi}^2}{4\sigma_i^2}}\right)$$

#### **Power example: treatment-covariate interaction**

• IPD meta-analysis of 14 trials to examine if BMI is an effect modifier for interventions to reduce unnecessary weight gain in pregnancy



#### **\*NEW WEBSITE\*** www.ipdma.co.uk INDIVIDUAL PARTICIPANT DATA (IPD) META-ANALYSIS Home What, why & when? Guidance & methods Our book Software Videos Courses & resources Promoting good practice in IPD meta-analysis projects entry-level information & guidance videos of seminars & new developments statistical software code & information important steps & principles key articles & references training courses & resources

#### **\*NEW TEXTBOOK\***

#### Individual Participant Data Meta-Analysis: A Handbook for Healthcare research

- Comprehensive introduction to IPD meta-analysis projects
- 18 chapters & over 500 pages, written and edited by researchers with substantial experience in the field
- Key concepts and practical guidance for each stage of an IPD meta-analysis project, alongside examples & learning points.
- Intended for a broad audience
- Covers trials, diagnosis, prognosis & prediction

