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Observational and causal associations 
of risk factors with disease

Associations in observational studies affected by:
confounding
measurement error
reverse causation

Still useful for risk prediction

Causal relationships can be estimated using:
randomized trials
instrumental variables (e.g. genetic variants)

Essential for identifying treatment targets

Causal effect is change in the outcome given a change in 
the risk factor
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C-reactive protein (CRP) and CHD

CRP is an acute-phase protein, a marker of inflammation, strongly 
associated with CHD in observational prospective epidemiological studies

IPD meta-analysis based on 54 prospective studies; 10,000 CHD events

Adjustments Hazard ratio per 1 SD increase
(usual level of confounders) in usual log CRP (95% CI)

Age, sex 1.68 (1.59 to 1.78)

+ SBP, smoking, diabetes, BMI,
log TG, chol, HDL-C, alcohol 1.37 (1.27 to 1.48)

+ fibrinogen 1.23 (1.07 to 1.42)

ERFC, Lancet 2010

Is CRP causally related to CHD?
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Genetic variants as instrumental variables
= Mendelian Randomization (MR)

Genetic variants often have only small effects on a 
risk factor / phenotype

Precision of individual MR studies is low

Typically require meta-analysis of MR studies 
(especially to ‘show’ a null effect)
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CRP CHD Genetics Collaboration (CCGC)

CCGC collated individual participant data (IPD):

43 studies (cross-sectional, case-control, prospective)
160,000 participants of European descent
36,000 CHD events (MI, CHD death)

Four pre-specified genetic variants (SNPs)*
Additional SNPs in some studies*
[* on the CRP-regulatory gene on chromosome 1]

Blood CRP concentrations in most studies

Aim: To estimate the causal effect of CRP on CHD as 
precisely as possible
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Outline of talk

1. One genetic variant in one study
2. Multiple genetic variants in one study
3. Multiple genetic variants in multiple studies

Issues:
4. Different study designs
5. Weak instrument bias
6. Lack of CRP measurements in some studies
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Diagram of causal effects

CRP gene 
variants (G)

CRP levels 
(X)

Confounders (U)

Outcome 
(Y)

Instrumental 
variable

Three crucial assumptions:
G affects X
G is not related to U
Y is conditionally independent of G given X and U
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Conventional instrumental variable analysis (i)

2 genetic subgroups

Mean (95% CI) outcome and 
phenotype by genetic subgroup

Mean outcome = log odds of CHD

Ratio of coefficients method:

causal effect =  log odds of CHD
 mean phenotype
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Conventional instrumental variable analysis (ii)

3 genetic subgroups

Mean (95% CI) outcome and 
phenotype by genetic subgroup 
(G=0,1,2)

Mean outcome = log odds of CHD

Two-stage method:

(i) Regress X on G = 0,1,2, giving X-pred
(ii) Regress Y on X-pred to estimate causal effect
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A modelling approach

Prospective study of new incident CHD with fixed follow-up

Individual i in genetic subgroup j has phenotype xij
nj events amongst Nj participants in subgroup j

Model at group level:
xij ~ N(j, 2)
nj ~ Bin(Nj, j)
logit(j) = 0+1j

1 is the causal effect estimate (increase in log odds of event 
per unit increase in phenotype)

Two-stage approach or one-stage approach
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Multiple genetic markers in one study

Individual i has:
outcome yi = 0/1
phenotype xi
genetic variants gik=0,1,2 for k=1…K SNPs

Additive linear (per allele) model at individual level:
xi ~ N(i, 2)

i = 0+ k kgik

yi ~ Bin(1, i)
logit(i) = 0+1i

1 is the causal effect estimate
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Multiple genetic markers in multiple studies

Individual i in study m has:
outcome yim = 0/1, phenotype xim
genetic variants gikm=0,1,2 for k=1…Km

Additive linear (per allele) model at individual level:
xim ~ N(im, m

2)

im = 0m+ k kmgikm

yim ~ Bin(1, im)
logit(im) = 0m+1mim

1m = 1 fixed-effect meta-analysis
1m ~ N(1, 2) random-effects meta-analysis
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Bayesian implementation

Use grouped data as much as possible (computational 
efficiency)

Vague priors:
Wide normal N(0,1002) on regression parameters
Wide uniform U[0,20] on standard deviations

MCMC using WinBUGS

Propagates uncertainty from stage 1 to stage 2
Allows feedback from stage 2 to stage 1

‘Estimate’ = mean of posterior distribution
‘SE’ = SD of posterior distribution
‘95% CI’ = 2.5th to 97.5th percentile of posterior distribution
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Different study designs
Cross-sectional prevalence study:

Use phenotype data in non-cases only
Retrospective and nested case-control studies:

Use phenotype data in controls only
Matched case-control studies:

Ignore matching
Check with sensitivity analysis

Prospective studies:
Ignore variable follow-up
Check with sensitivity analyses

Estimate of causal effect as population (marginal) log 
odds ratio in all studies

Can include individuals with missing phenotype data
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A prospective study with both 
prevalent and incident cases

In genetic subgroup j :
N1j individuals of whom n1j are prevalent cases
N2j ( =N1j–n1j ) non-prevalent individuals, 

of whom n2j have incident events

Model at group level:
xij ~ N(j, 2) for i=1…N2j non-prevalent subjects
n1j ~ Bin(N1j, 1j)
n2j ~ Bin(N2j, 2j)
logit(1j) = 01+1j
logit(2j) = 02+1j

Estimate a single causal log odds ratio 1
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Weak instrument bias
Weak instruments

– explain little variation in phenotype
– small studies (finite sample bias)

F-statistic for regression of phenotype on genetic 
instrument(s) is a measure of instrument strength

Weak instruments give causal estimates biased in the 
direction of the observational association

Expected F-statistic >10 generally limits the bias in the 
causal estimate to less that 1/10 = 10% of the bias in the 
observational association
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Addressing weak instrument bias in meta-analysis

Combine estimates of genetic effects on phenotype across 
studies which assessed the same SNPs:

xim ~ N(im, m
2) in study m

im = 0m+ k kmgikm

km = k fixed-effect
km ~ N(k, k

2) random-effects

CCGC (4 pre-specified SNPs):
g1, g2, g3, g4 20 studies
g1, g2, g4 12 studies
g1, g2, g3 5 studies
g2 5 studies
other 1 study
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Studies without phenotype data

Study has genetic variants in common with other studies

Use the random-effects distributions for the genetic 
association parameters 1 … K as a predictive 
distribution (implicit prior) for the unknown parameters

Requires an assumption of exchangeability: explicitly 
Bayesian

10 out of 43 studies had no CRP data



19

Are genetic variants instrumental variables?
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Is per-allele analysis reasonable?

Mean level of log CRP (95%CI) in non-diseased individuals 
in each study by number of variant alleles in g1
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Principal results of CCGC
Causal estimate = log odds ratio of CHD per unit increase in log CRP

Studies / Cases Causal est. (95%CI) Heterog.

Two-stage classical analysis

Logistic regression 33 / 24135 0.024 (-0.092 to 0.140) I2=13%

One-stage Bayesian analysis

Pooled SNPs
(all studies) 43 / 36463 -0.013 (-0.115 to 0.094) =0.106
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Interpretation of principal result

Estimate of 1 -0.013
95% CI (-0.115 to 0.094)
Estimate of  0.106

Overall OR per unit increase in log CRP:
0.99 (95%CI 0.89 to 1.10)

Overall OR per doubling in CRP:
0.99 (95%CI 0.92 to 1.07)

Predictive distribution for true OR in new study per 
doubling of CRP:

0.99 (95% range 0.84 to 1.16)
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Conclusions

Provides a flexible framework for meta-analysis of MR studies:

Multiple, different SNPs in each study

Studies with prevalent and incident cases

Studies without phenotype data

Heterogeneity between studies

Minimising weak instrument bias
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