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Observational and causal associations
of risk factors with disease

Associations in observational studies affected by:
confounding
measurement error
reverse causation

Still useful for risk prediction

Causal relationships can be estimated using:
randomized trials
instrumental variables (e.g. genetic variants)
Essential for identifying treatment targets

Causal effect is change in the outcome given a change in
the risk factor



C-reactive protein (CRP) and CHD

CRP is an acute-phase protein, a marker of inflammation, strongly
associated with CHD in observational prospective epidemiological studies

IPD meta-analysis based on 54 prospective studies; 10,000 CHD events

Adjustments Hazard ratio per 1 SD increase
(usual level of confounders) In usual log CRP (95% CI)
Age, sex 1.68 (1.591t0 1.78)
+ SBP, smoking, diabetes, BMI,

log TG, chol, HDL-C, alcohol 1.37 (1.27 to 1.48)
+ fibrinogen 1.23 (1.07 to 1.42)

ERFC, Lancet 2010

Is CRP causally related to CHD? 3



Genetic variants as instrumental variables
= Mendelian Randomization (MR)

Genetic variants often have only small effects on a
risk factor / phenotype

Precision of individual MR studies is low

Typically require meta-analysis of MR studies
(especially to ‘'show’ a null effect)



CRP CHD Genetics Collaboration (CCGC)

CCGC collated individual participant data (IPD):

43 studies (cross-sectional, case-control, prospective)
160,000 participants of European descent
36,000 CHD events (MIl, CHD death)

Four pre-specified genetic variants (SNPs)*
Additional SNPs in some studies*
[* on the CRP-reqgulatory gene on chromosome 1]

Blood CRP concentrations in most studies

Aim: To estimate the causal effect of CRP on CHD as
precisely as possible 5



Outline of talk

1. One genetic variant in one study
2. Multiple genetic variants in one study
3. Multiple genetic variants in multiple studies

Issues:

4. Different study designs

5. Weak instrument bias

6. Lack of CRP measurements in some studies



Diagram of causal effects
Confounders (U)

Instrumental
variable

CRP gene ., CRP levels , Outcome
variants (G) (X) (Y)

Three crucial assumptions:

G affects X

G Is not related to U

Y Is conditionally independent of G given X and U



Conventional instrumental variable analysis (i)

2 genetic subgroups
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Ratio of coefficients method:

causal effect = A log odds of CHD
A mean phenotype




Conventional instrumental variable analysis (ii)
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Two-stage method:

() Regress Xon G =0,1,2, giving X-pred
(i) Regress Y on X-pred to estimate causal effect



A modelling approach

Prospective study of new incident CHD with fixed follow-up

Individual 1 in genetic subgroup ] has phenotype x;
n, events amongst N; participants in subgroup |

Model at group level:
X; ~ N(&;, o)
n, ~ Bin(N;, )
logit(m) = Bo+B4E;

B, Is the causal effect estimate (increase In log odds of event
per unit increase in phenotype)

Two-stage approach or one-stage approach 10



Multiple genetic markers in one study

Individual i has:
outcome y; = 0/1
phenotype x
genetic variants g,=0,1,2 for k=1...K SNPs

Additive linear (per allele) model at individual level:

X; ~ N(&;, 2)
& = agt 2 0y
y, ~ Bin(1, w)

logit(m;) = Po+P4&;

B, Is the causal effect estimate

11



Multiple genetic markers in multiple studies

Individual i in study m has:
outcome vy, = 0/1, phenotype X,
genetic variants g,,=0,1,2 for k=1...K |

Additive linear (per allele) model at individual level:
Xim ~ N(&im» %)
Eim = Olom™ 24k WenGikm
Yim ~ Bin(1, m;)
logit(mim) = Bom*™B1im&im

Bim = By fixed-effect meta-analysis
Bim ~ N(B1, T2 random-effects meta-analysis

12



Bayesian implementation

Use grouped data as much as possible (computational
efficiency)
Vague priors:
Wide normal N(0,100%) on regression parameters
Wide uniform UJ[0,20] on standard deviations

MCMC using WInBUGS

Propagates uncertainty from stage 1 to stage 2
Allows feedback from stage 2 to stage 1

‘Estimate’ = mean of posterior distribution
‘SE’ = SD of posterior distribution
‘95% CI' = 2.5 to 97.5™ percentile of posterior distribution

13



Different study designs

Cross-sectional prevalence study:

Use phenotype data in non-cases only
Retrospective and nested case-control studies:

Use phenotype data in controls only
Matched case-control studies:

Ignore matching

Check with sensitivity analysis
Prospective studies:

Ignore variable follow-up

Check with sensitivity analyses

Estimate of causal effect as population (marginal) log
odds ratio in all studies

Can include individuals with missing phenotype data 14



A prospective study with both
prevalent and incident cases

In genetic subgroup | :
N,; individuals of whom ny; are prevalent cases
Ny ( =Ny—ny; ) non-prevalent individuals,
of whom n,; have incident events

Model at group level:
X; ~ N(§;, o) for i=1...N, non-prevalent subjects
ny; ~ Bin(Ny;, 7y
N, ~ Bin(Ny;, 5)
logit(myy) = Bor P48
logit(my) = BoatP4E;

Estimate a single causal log odds ratio f3, "



Weak instrument bias

Weak instruments
— explain little variation in phenotype
— small studies (finite sample bias)

F-statistic for regression of phenotype on genetic
Instrument(s) is a measure of instrument strength

Weak instruments give causal estimates biased in the
direction of the observational association

Expected F-statistic >10 generally limits the bias in the

causal estimate to less that 1/10 = 10% of the bias in the
observational association

16



Addressing weak instrument bias in meta-analysis

Combine estimates of genetic effects on phenotype across
studies which assessed the same SNPs:

Xiy ~ N(&iryy 011°) in study m

Eim = Gom™ 2 Uik

Oy = Oy fixed-effect

ey ~ N(oy, 7,2) random-effects

CCGC (4 pre-specified SNPs):

J1, 92, 93, Uy 20 studies
J1, 92, U4 12 studies
J1, 92, O3 5 studies
J> 5 studies

17

other 1 study



Studies without phenotype data

Study has genetic variants in common with other studies

Use the random-effects distributions for the genetic
association parameters o ... ok as a predictive
distribution (implicit prior) for the unknown parameters

Requires an assumption of exchangeability: explicitly
Bayesian

10 out of 43 studies had no CRP data

18



Are genetic variants instrumental variables?

153093077 (frequency of risk allele: G = 0.06)

Variable .:l‘!kw, P value ”ﬁﬂ.“e ﬂﬁ&'"

ch*h SNP  adlele change in SNP

Ln C reactive protein (mg/L)  15/70 117 54410 -  0.207(0.174100.239)

Age at survey (years) 18/81 648 0.83 0.002(-0.024100.019)
BMI (kg/m?) 16/73663 0.34 0.011 (-0.012 t0 0.034)
Systolic BP (mm Hg) 16/74 309  0.04 0.024 (0.001 to 0.047)

Diastolic BP (mm Hg) 16/74 292 0.46 0.009 (-0.015 10 0.032)
Total cholesterol (mmol/L) 16/72 938 0.91 0.001 (-0.026t00.023)
Non-HDL cholesterol (mmel /L) 16/70 969 0.71 0.004 (-0.019 t0 0.028)
HDL cholesterol (mmol /L) 16/70971  0.44 0011 (-0.0401t00.017)
Ln triglyceddes (mmol/L) 16/70 476  0.42 0.01 (-0.014100.033)

LDL cholesterol (mmol/L) 16/68 247  0.69 0.005 (-0.019 to0 0.029)
Apolipoprotein A | (g/L) B/SB678 0.57 0.012 (-0.029 t0 0.053)
Apolipoprotein B (g/L) 8/58841 0.45 0.01 3 (-0.020 to 0.046)
Albumin (g/0) 1/2436 0.57 D097 (-0.437100.242)
Lp(a) lipoprotein (mg/dL) 3/16577  0.37 — 0.025 (-0.07910 0.029)
Ln interleukin 6 (ng/L) 6/13274 0.83 0.006 (-0.045 to 0.056)
Fibrinogen (mol /L) 13/64 190 0.30 _E 0.014 (-0.013 t0 0.041)
Ln leucocyte count (x107/L) 2/2938 0.36 —— DO78(-0.246100.089)
Glucose (mmol/L) 12/60 961 0.48 Al 0014 (-0.051100.024)
Smoking amount (pack years)  2/926 0.14 -———— 0.151(-0.350100.048)
Weight (kg) 14/68 760  0.21 0.015 (-0.009 to 0.038)
Height (cm) 14/70 385 0.44 0.011 (-0.017 to 0.040)
Waist:hip ratio B/62358 0.97 0.001 (0.025t0 0.025)

4.340.2-0.1 0 010203 19



Is per-allele analysis reasonable?

log(CRP)

Mean level of log CRP (95%CI) in non-diseased individuals

In each study by number of variant alleles in g,
20



Principal results of CCGC

Causal estimate = log odds ratio of CHD per unit increase in log CRP

Studies / Cases Causal est. (95%Cl) Heterog.

Two-stage classical analysis

Logistic regression 33/24135 0.024 (-0.092 to 0.140) 1°=13%

One-stage Bayesian analysis

Pooled SNPs
(all studies) 43 [ 36463 -0.013 (-0.115 to 0.094) 1=0.106

21



Interpretation of principal result

Estimate of 3, -0.013
95% CI (-0.115 to 0.094)
Estimate of 1 0.106

Overall OR per unit increase in log CRP:
0.99 (95%CI 0.89 to 1.10)

Overall OR per doubling in CRP:
0.99 (95%CI 0.92 to 1.07)

Predictive distribution for true OR In new study per
doubling of CRP:

0.99 (95% range 0.84 to 1.16)

22



Conclusions

Provides a flexible framework for meta-analysis of MR studies:
Multiple, different SNPs in each study
Studies with prevalent and incident cases
Studies without phenotype data
Heterogeneity between studies

Minimising weak instrument bias

23
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