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Labeled data are scarce in a good deal of applied classification settings. This
has given rise to the paradigm of semi-supervised learning (SSL), where infor-
mation from unlabeled data is (partly) taken into account to improve inference
drawn from labeled data in a supervised learning framework. Within SSL, an in-
tuitive and widely used approach is referred to as self-training or pseudo-labeling
[16, 5, 8, 9]. The idea is to fit an initial model to labeled data and iteratively assign
pseudo-labels to some of the unlabeled data according to the model’s predictions.
This process requires a criterion for pseudo-label selection (PLS), that is, the
selection of unlabeled instances to be pseudo-labeled and added to the training
data.

In my talk as part of the Young Statisticians Lecture Series, I will argue
that PLS is nothing but a decision problem. This perspective clears the way
for deploying several decision-theoretic approaches – first and foremost, finding
Bayes optimal actions (selections of pseudo-labels) under common loss/utility
functions. With the joint likelihood as utility, the Bayes optimal criterion turns
out to be the posterior predictive of pseudo-samples [13]. Since the latter requires
computing a possibly intractable integral, I will spotlight some analytical approx-
imations based on Laplace’s method that circumvent expensive sampling-based
evaluations of the posterior predictive [13]. Empirical evidence suggests that such
a Bayesian approach to PLS can mitigate the confirmation bias in self-training
that results from overfitting initial models [1]. Notably, the decision-theoretic
embedding of PLS also yields the framework of optimistic/pessimistic superset
learning [3, 4, 15] as max-max-/min-max-actions.

In the second part of my talk, I will discuss some extensions of Bayesian
PLS based on generalized Bayesian decision theory [14]. They aim at robustify-
ing PLS w.r.t. model selection, accumulation of errors and covariate shift [12].
What is more, I present Bayesian PLS with convex sets of prior and a regret-
based updating rule. The set of priors can reflect uncertainty regarding prior
information, but might as well represent priors near ignorance, see e.g. [2, 7, 6,
10, 11]. The talk will conclude with several applications of (generalized) Bayesian
PLS on real-world classification problems under weak supervision.
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