

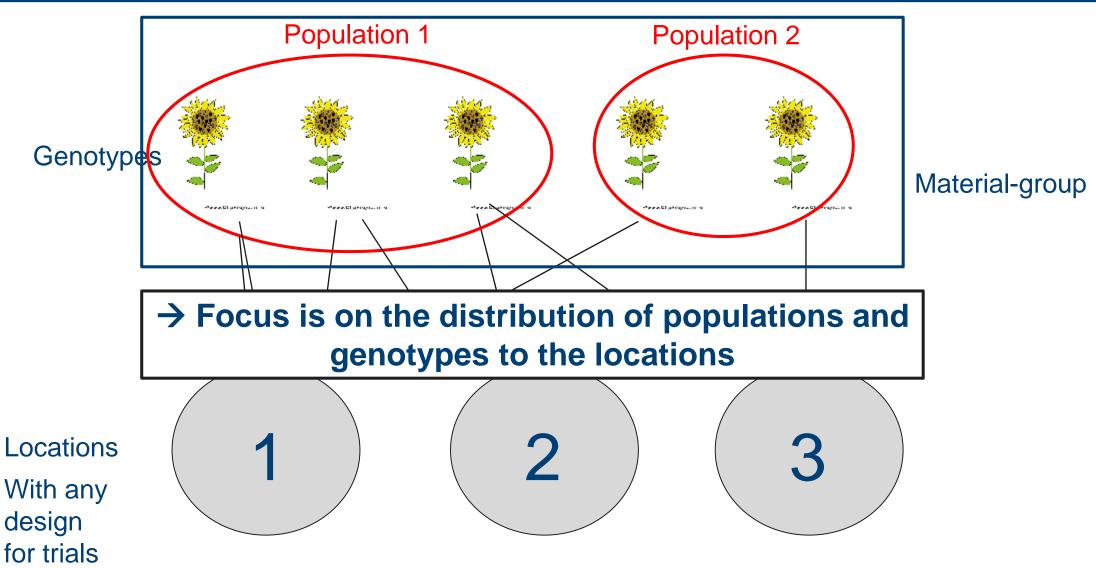
Sommertagung AG Landwirtschaftliches Versuchswesen 29. – 30. Juni 2017

"Der Nutzen von teilwiederholten Versuchen bei Sonnenblumen"

29.06.2017

Christian Sponagel, Hans-Peter Piepho, Jens Möhring (Uni Hohenheim)

UNIVERSITÄT HOHENHEIM


Table of contents

- 1. Introduction
- 2. Materials and methods
- 3. Results & Discussion
- 4. Conclusion
- 5. Sources

2. Material and methods

The dataset:

- 231 genotypes from 39 populations
- Population size: 1-11 genotypes
- A genotype is being tested in 2-5 locations
- Not every genotype is tested in every locations:
- → partly repeated experiment
- A population is in average tested in 5.59 locations
- The whole experiment extends across 10 locations
- → neither single genotypes, nor populations are being tested in every location

UNIVERSITÄT HOHENHEIM

- Each genotype is assigned to one material-group
- Three material-groups are used

Table 2: The material-groups

	Material-group		
populations	genotypes	plots	
14	63	261	1
16	107	454	2
9	63	260	3

Table 1: Distribution of populations 1-11 to the locations

populations					loc	ations					sum
•	AR	MO	RT01	OD01	TV01	NS01	HFM	MZ01	SC01	VM01	
1		×		-	*			×	×	*	5
2		×			×			×	×	×	5
3		×		×	×	×	×	×	×		7
4		×				×	×	×	×	×	6
5		×				×	×	×	×	×	6
6		×					×	×	×	×	5
7	×	×	×	×	×	×		×	×	×	9
8	×	×	×	×	×				×		6
9	×	×	×	×					×		5
10		×	×	×				×	×	×	6
11		×	×	×				×	×	×	6

The analysis of the data

$$Genotype_{ij} = P_i + g_{ij}$$

 $Genotype_{ij}$ = genetic value of the genotype ij

 P_i = effect of the population i

 g_{ij} = effect of the genotype j within population i

The analysis of the data

Two analyses:

- 1. Fixed genetic effects (2 stage analysis)
- 2. Random genetic effects (3 stage analysis)
- In both analyses weighting is done by the macro %one_big_omega (Damesa et al., 2017)

UNIVERSITÄT HOHENHEIM

Interaction or nested

: :Seperates fixed and

: Residual error

random effects

effects

1. Fixed genetic effects

Stage 1 per location:

Block-model: :EV + W•EV + U• W•EV + P•U•W•EV

Treatment-model: **Gen(Pop*check)**

Complete model: Gen(Pop*check): EV + W•EV+ U• W•EV + P•U•W•EV

Stage 2 across locations:

Block-model: :Ort + Obs1
Treatment-model: Gen(Pop*check)

Interactions: : D1 • Pop • Ort + check • Ort + D1 • Gen(Pop) • Ort

Complete model: Gen(Pop*check): Ort + D1•Pop• Ort + check •Ort + D1•Gen(Pop)• Ort + Obs1

EV: trial effect

W•EV: replication effect within a trial

U•W•EV: incomplete block effect within a replication

P•U•W•EV: plot effect within a incomplete block

Gen: genetic effect of a genotype

Pop: population effect Check: effect of a check Ort: effect of a location

D1: dummy variable with the value 0 for checks and 1 for the

other genotypes

Obs1: variable with a level for each observation (residual error)

2. random genetic effects (BLUP's)

Stage 1 per location
Stage 2 across locations

Stage 3:

Complete model: Check: D1•Pop + D1•Gen(Pop) + Obs2

Gen: genetic effect of a genotype

Pop: population effect

Check: effect of a check

Obs2: variable with a level for each observation

2. random genetic effects (BLUP's)

In order to use the covariance between genotypes of the same population,
 a Compound-Symmetry (CS) - structure is used for the variance-covariance-matrix
 in stage 3

$$var\left(Genotype_{ij}\right) = \sigma_{pop}^{2} + \sigma_{gen}^{2} \qquad var\left(\frac{Genotype_{ij}}{Genotype_{ij'}}\right) = \begin{pmatrix} \sigma^{2}_{pop} + \sigma^{2}_{gen_{j}} & \sigma^{2}_{pop} & \sigma^{2}_{pop} \\ \sigma^{2}_{pop} & \sigma^{2}_{pop} + \sigma^{2}_{gen_{j'}} \end{pmatrix}$$

```
cov (Genotype<sub>ij</sub>; Genotype<sub>ij</sub>) = \sigma^2_{pop}

i = Index of the population i

j = Index of the genotype j
```


Evaluation criteria

- The experimental designs are evaluated by the average standard error over all pairwise differences (s.e.d.)
- In the analysis with fixed genetic effects this is done by the option pdiff in SAS for the Ismeans of the genotypes
- In the analysis with random genetic effects this is done by using the inverse of the mixed-model-equations (MMEQ)

Calculation of the average sed from the MMEQ

$$\begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + D^{-1} \end{bmatrix}^{-1} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}.$$

X: design matrix for fixed effects

R: variance-covariance of the residual error

Z: designmatrix for random effects

D: variance-covariance matrix of random effects

C₂₂: variance-covariance matrix of the residual error for the estimations of the random effects

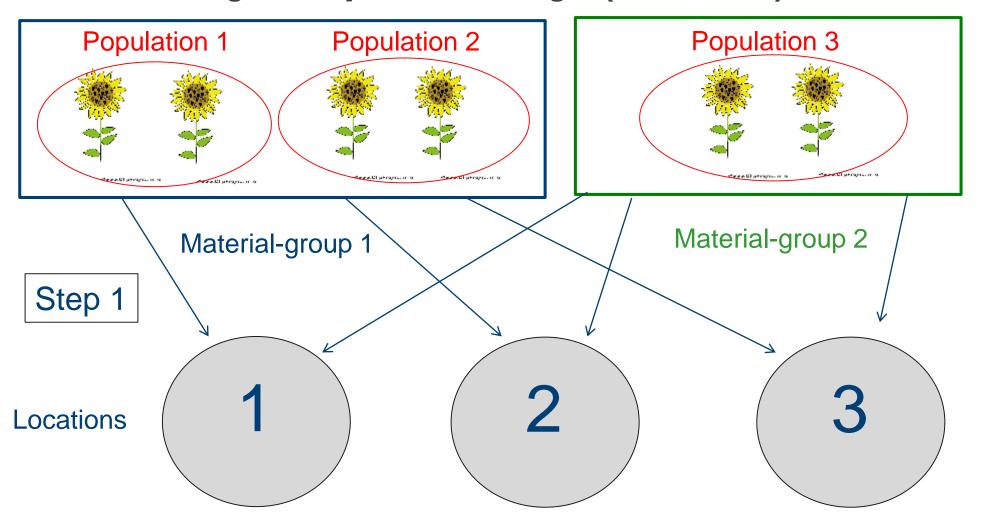
- The matrix C_{22} can be get by the option MmeqSol in proc mixed in SAS

Calculation of the average s.e.d. from the MMEQ

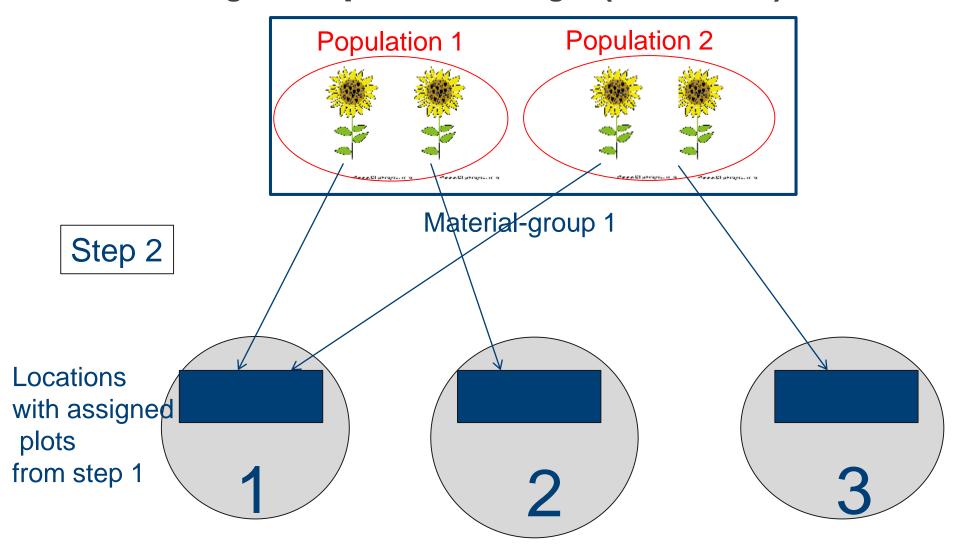
- To calculate the average s.e.d. from the matrix C_{22} a macro (Ould Estaghvirou et. al, 2013) is used

$$\bar{v}_D = \frac{2}{n(n-1)} \left[n \times trace(V_M) - 1_n V_M 1_n^T \right]$$

 \bar{v}_D = average variance of all pairwise differences


n = number of parameters that are compared

 $trace(V_M)$ = trace of the varianz-covariance-matrix V_M


 $1_n V_M 1_n^T = \text{sum of all elements in the matrix } V_M$

$$\overline{sed} = \sqrt{\overline{var}}$$

- The optex procedure in SAS is used:
- Genotypes and populations have to be distributed optimally to the locations, i.e. testing the populations in as many locations as possible
- Step 1: Distributing the material-groups to the locations
- → each material-group gets a capacity of plots in each location, according the number of populations and total number of plots that the group includes

Step 2:

- Now the genotypes within each material-group are distributed to the assigned capacity of plots in each location
- But also the populations have to be distributed optimally
- So treatments are both genotype and population
- Blocks are the locations
- In the blocks-statement also sub-structures are possible and with the prior option a optimal distribution of the treatments to the blocks and "sub-blocks" is possible

- But in the block-statement there are no substructures, there is just the location
- In the treatment-statement there is no prior option available, but there are substructures:
 Populations and genotypes within a population
- → So treatments and blocks are changed (John & Williams, 1995)

Treatments: locations

Blocks: populations

Subblocks: genotypes within a population

- Now the belonging of genotypes to populations is taken into account
- Populations are now tested in as many locations as possible

- Also in step 1 the treatments and blocks are changed:

Treatments: locations

Blocks: material-group

Subblock: Population

- For the selection of the experimental design the optex-procedure uses
 the D- and A-efficiency
- The D- and A-efficiency can also be calculated for a existing design (option init=chain and iter=0 in SAS)

Fixing of the variance-components

- In all stages of the analysis of the dataset there are variance-components for the random effects
- These variance-components are fixed and used to calculate the average s.e.d. in the scenarios 0-3

Table 3: Comparison of the scenarios

	Number of plots in the whole experiment	Number of Replicates of each genotype	Number of locations	Size of locations	Distribution of genotypes and population s
Scenario 0			10		
Scenario 1			10		
Scenario 2			20	½ Size	
Scenario 3			10	Equal size	

Scenario 0 (real dataset)

- For the real dataset the average s.e.d. is calculated again with the fixed variance-components
- All observations are set to the value 1 (any value can be used)
- Now also observations with missing values are included
- Scenario 0 is used to compare the existing experimental-design with the designs of the scenarios 1-3

Table 4: Comparison of the scenarios

Experimental-design	Average number of			
	Locations a genotype is	Genotypes from one		
	being tested in	population in one location		
Scenario 0	5.59	4.47		
Scenario 1	9.21	2.62		
Scenario 2	15.74	1.47		
Scenario 3	9.62	2.54		

Table 5: Variance-components in stage 3

effect	variance in (kg/plot) ²		
Pop	0.000530		
Gen(Pop)	0.007971		

→ population-variance is rather small

Table 6: Average s.e.d. in the scenarios

Random genetic effects			Fixed genetic effects		
	Average sed	Change to scenario 0		Average sed	Change to scenario 0
Copporio		+/- 0 %	Soonaria ()	0.228	+/- 0 %
Scenario 0	0.082	1, 0,70	Scenario 0		
Scenario 1	0.070	- 14 %	Scenario 1	0.224	- 1.5 %
Scenario 2	0.065	- 20 %	Scenario 2	0.227	- 0.4 %
Scenario 3	0.069	- 16 %	Scenario 3	0.225	- 1.5 %

- Greater impact of the new experimental desings when genetic effects are random
- Smallest s.e.d. in scenario 2 with random genetic effects
- Fixed genetic effects: smallest s.e.d. in scenario 1

- Greater impact on the s.e.d. when genetic effects are random
- Population-effect (covariance between genotypes of the same population) is not used when genetic effects are fixed
- → More precise estimations of the population-effects have an impact on the precision of the genetic value of a genotype

Random genetic effects			Fixed genetic effects		
	Average sed	Change to scenario 0		Average sed	Change to scenario 0
Scenario 0	0.082	+/- 0 %	Scenario 0	0.228	+/- 0 %
Scenario 1	0.070	- 14 %	Scenario 1	0.224	- 1.5 %
Scenario 2	0.065	- 20 %	Scenario 2	0.227	- 0.4 %
Scenario 3	0.069	- 16 %	Scenario 3	0.225	- 1.5 %

- The entire number of plots is equal in all scenarios, also with 20 locations
- It remains to be seen whether the use of 20 locations is also economic
- Scenario 1 is probably the most realistic scenario
- Same number of plots for each genotype would probably be beneficial
- To compare two genotypes the s.e.d. is important, so the s.e.d. was used to evaluate the scenarios

- It is beneficial to test the populations in more locations, instead of testing genotypes of the same population together in a location
- → Partly repeated experiments make sense!

Damesa, T., Möhring J., Piepho H.-P., 2017, One Step at a Time: Stage-Wise Analysis of Series of Experiments in: Agronomy Journal (in revision)

Piepho, H.-P., 2015, Biometrie, Vorlesungsskript, Hohenheim

Williams, E.R. & John, J.A., 1995, Cyclic and Computer Generated Designs, Chapman & Hall, London (Erstauflage 1987)

www.ClipProject.info,

http://www.clipartsfree.de/images/joomgallery/originals/bauernhof_4/sonnenblume_bild_clipart_kostenlos_20130706_1744935743.jpg (Abruf am 26.01.2017)

https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-14-860 (Abruf am 07.12.2016)
Ould Estaghvirou S.B., O Ogutu J., Schulz-Streeck T., Knaak C., Ouzunova M., Gordillo A., Piepho H.-P., 2013, Evaluation of approaches for estimating the accuracy of genomic prediction in plant breeding, in: BMC Genomics 14:860 (2013), licensee BioMed Central Ltd.

https://support.sas.com/documentation/onlinedoc/qc/132/optex.pdf (Abruf am 01.12.2016), SAS Institute Inc. 2014. SAS/QC® 13.2 User's Guide. Cary, NC: SAS Institute Inc.

Vielen Dank für Ihre Aufmerksamkeit!