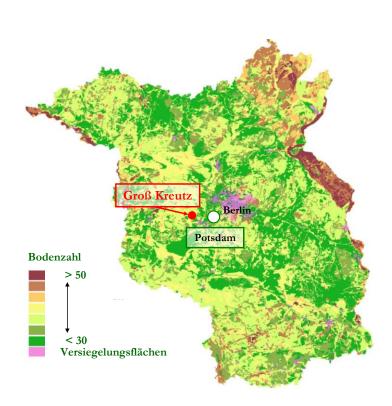


Sommertagung AG Landwirtschaftliches Versuchswesen Potsdam, 25.-26. Juni 2015

Wahl geeigneter Funktionsansätze für die Beschreibung von Merkmalen aus Dauerfeldversuchen in Abhängigkeit von Zeit oder der N-Düngung

Bärbel Kroschewski¹ & Jörg Zimmer^{1,2}

¹ Humboldt-Universität zu Berlin
 ² Landesamt für Ländliche Entwicklung, Landwirtschaft und Flurneuordnung


Vortragsgliederung

- Dauerfeldversuch M4 Groß Kreutz
 - Standort und Versuchsdesign
 - Prüfmerkmale
- Auswertung ausgewählter Merkmale
 - Ertrag in Abhängigkeit von der N-Düngung
 - [Bodenmerkmale]

Versuchsstandort Groß Kreutz - Landkreis Potsdam-Mittelmark

Kühn & Bauriegel: Standorteignung der Böden im Land Brandenburg (LGBR, 2007)

Geologie:

Nördlicher Teil des Glindower Plateaus im Landschaftsraum der Mittelbrandenburgischen Plateaus und Niederungen

Höhenlage: 42 m NN

Grundwasserstand: > 20 m

Klima:

Ostdeutsches Binnenlandklima

mittlerer Jahresniederschlag: 537 mm

mittlere Jahrestemperatur: 8,9 °C

Boden-Klima-Raum:

Trocken-warme diluviale Böden des ostdeutschen Tieflandes

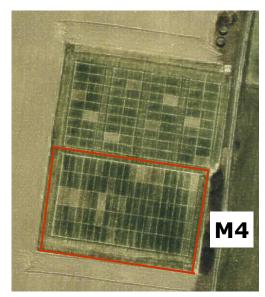
Dauerfeldversuch M4 im Prüffeld Groß Kreutz

Mittlere Bodeneigenschaften

(Kühn & Hannemann 2004, LGBR 2004, Asmus 1990, ergänzt)¹

	Parameter	DFV M4
	Bodenform	Fahlerde aus Sand (Geschiebedecksand) über Lehm (Geschiebemergel)
	Bodenart	Kryoturbater Lehmsand aus Geschiebedecksand (AZ 40/42)
	Bodenartenuntergruppe	Stark schluffiger Sand (Su 4)
及图式。在100mm,表示。	Bodengruppe (VDLUFA)	Schwach lehmiger Sand (BG 2, I'S)
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Ton/Schluff/Sand (%)	6 / 44 / 50
	Trockenrohdichte (g cm ⁻³) ¹	1,56
1	C_t/N_t (%) ¹	0,653 / 0,056
	pH-Wert ¹	5,6
	P _{DL} /K _{DL} /Mg _{CaCl2} (mg 100 g ⁻¹ Boden) ¹	5,3 / 9,0 / 1,7
	nFK (Vol%)	12,4
	KAK (cmol _c /kg)	4,7

Bildquelle: Zimmer (2004)


Standortrepräsentanz: **BG 2** im Land BB auf **42 % d. AF**, davon 48 % grundwasserfern

¹ zu Versuchsbeginn (1967)

Humboldt-Universität zu Berlin Albrecht-Daniel-Thaer-Institut für Agrar- und Gartenbauwissenschaften

Versuchsdesign

© GeoBasis-DE/LGB 2013

	A-	Blo	ck			В-	Blo	ck		C-Block		ck D-Block							
a ₅ b ₁	a ₅ b ₂	a ₅ b ₃	a ₅ b ₄	a ₅ b ₅	a₃b₅	a ₄ b ₅	a ₅ b ₅	a ₁ b ₅	a ₂ b ₅	a ₃ b ₂	a ₃ b ₁	a ₃ b ₃	a ₃ b ₅	a ₃ b ₄	a ₄ b ₃	a_1b_3	a ₅ b ₃	a_2b_3	a_3b_3
a_4b_1	a ₄ b ₂	a ₄ b ₃	a_4b_4	a ₄ b ₅	a ₂ b ₄	a ₁ b ₄	a ₅ b ₄	a_3b_4	a ₄ b ₄	a ₂ b ₅	a_2b_2	a ₂ b ₄	a ₂ b ₁	a ₂ b ₃	a ₄ b ₂	a_2b_2	a ₁ b ₂	a ₅ b ₂	a ₃ b ₂
a_3b_1	a ₃ b ₂	a ₃ b ₃	a ₃ b ₄	a ₃ b ₅	a ₅ b ₃	a_2b_3	a ₃ b ₃	a_1b_3	a ₄ b ₃	a ₁ b ₂	a ₁ b ₅	a ₁ b ₄	a ₁ b ₁	a ₁ b ₃	a ₅ b ₁	a ₄ b ₁	a_1b_1	a_2b_1	a ₃ b ₁
a ₂ b ₁	a ₂ b ₂	a ₂ b ₃	a ₂ b ₄	a ₂ b ₅	a ₁ b ₂	a ₃ b ₂	a ₄ b ₂	a ₅ b ₂	a ₂ b ₂	a ₄ b ₅	a_4b_3	a ₄ b ₁	a ₄ b ₄	a ₄ b ₂	a ₅ b ₅	a ₂ b ₅	a ₁ b ₅	a ₄ b ₅	a ₃ b ₅
a_1b_1	a ₁ b ₂	a ₁ b ₃	a_1b_4	a ₁ b ₅	a ₃ b ₁	a ₅ b ₁	a ₂ b ₁	a_1b_1	a ₄ b ₁	a ₅ b ₃	a ₅ b ₅	a ₅ b ₂	a ₅ b ₄	a ₅ b ₁	a_2b_4	a_4b_4	a_1b_4	a ₃ b ₄	a ₅ b ₄

<u>Versuchsbeginn:</u> 1967, 1979 Ackerkrumenvertiefung (25 -> 30 cm)

A: Stalldung-N a=5

jeweils **0, 50, 100, 150, 200** kg N ha⁻¹ a⁻¹

B: Mineral-N (KAS) b=5

v=25 Prüfglieder

A x B - Block

Fruchtfolge: - Silomais (bis 1993 Kartoffeln)

- Winterroggen (bis 2000 Winterweizen)

n=4 Blocks

- Silomais (bis 1991 Zuckerrüben)

- Winterroggen (bis 1998 Sommergerste)

Prüfmerkmale: Pflanzenertrag und Nährstoffgehalt

Fruchtart	Merkmal		Turnus	Erfassungs- einheit
Pflanzenertrag				
Silomais	FM Ganzpflanze			
Winterroggen	FM Korn	dt ha ⁻¹	jährlich	Parzelle
	FM Stroh			
TS_ und Nährstot	faehalt im Pflanzenmaterial			

	TS-Gehalt			
Silomais	N			
WR-Korn	Р	%	jährlich	Prüfglied
WR-Stroh	K			
	Mg (seit 1999)			

Abgeleitete Merkmale

Silomais	TM Ganzpflanze	dt ha ⁻¹	jährlich	
Winterroggen	TM Korn, TM Stroh			
Fruchtwechsel	TM Fruchtwechselertrag (SM+WRkorn-WRstroh)/3	dt ha ⁻¹ a ⁻¹	je Rotation	Parzelle
	Nährstoffabfuhr (N, P, K, Mg) je Fruchtwechsel	kg ha ⁻¹ a ⁻¹	je Rotation	

Prüfmerkmale: Boden

Bodenuntersuchungen

Zeitraum	Merkmal		Turnus	Erfassungs- einheit
1967 – 1994, 2002	C _t , N _t , P _{DL} , K _{DL} , Mg _{CaCl (1)}	%		Prüfglied
	рН		2 – 4 Jahre	
1998, ab 2004	C _t , N _t , P _{DL} , K _{DL} , Mg _{CaCl (1)}	%		Parzelle
	рН			

(1) ab 2000

Abgeleitete Merkmale, z.B.

Merkmal		Formel
C _t - Vorrat	t ha ⁻¹	C _t * TRD * Ap
N _t - Vorrat		N _t * TRD * Ap

Ap=30 cm

 $TRD = 1.628 \cdot e^{-0.084 \cdot C_t}$

Silomais	TM Ganzpflanze		1993 - 2013	11 Jahre
Winterroggen	TM Korn (FM 86%)	dt ha ⁻¹ a ⁻¹	2002 - 2014	7 Jahre
	TM Stroh (FM 86%)			
Fruchtwechsel	TM Fruchtwechselertrag		2001/02 - 2013/14	7 Rotationen

Auswertung je Jahr:
$$\underline{y}_{ijk} = \mu + \eta_k + \alpha_i + \beta_j + \omega_{ij} + \underline{\varepsilon}_{ijk}$$

```
proc mixed DATA=SM; /* WRK WRS FW */
class MinN OrgN Block;
model TM = MinN OrgN MinN*OrgN Block / ddfm=kr;
* repeated / group = MinN;
* repeated / group = OrgN;
```

* repeated / group = MinN*OrgN;
by Jahr; /* Rotation */

lsmeans MinN*OrgN / adjust=T;

run;

$$i = 1,...,5$$
 (a)

$$j = 1,...,5$$
 (b)

$$k = 1,...,4$$
 (n)

→ fixe Blockeffekte (Dauerversuch!)

	#	# Bestmodelle nach AICC					
Merkmal	Total	varianz-	z- Varianzheterogenität				
		homogen	MinN	OrgN	MinN x OrgN		
SM	11	7	3	1	0 (5)		
WRK	7	3	0	4	0 (3)		
WRS	7	3	3	1	0 (2)		
FW	7	4	1	2	0 (3)		
Summe	32	17	7	8	0 (13)		

i = 1,...,5 (a)

→ fixe Blockeffekte

(Dauerversuch!)

- Auswertung: Ertrag in Abhängigkeit von der N-Düngung -

Silomais	TM Ganzpflanze		1993 - 2013	11 Jahre
Winterroggen	TM Korn (FM 86%)	dt ha ⁻¹ a ⁻¹	2002 - 2014	7 Jahre
	TM Stroh (FM 86%)			
Fruchtwechsel	TM Fruchtwechselertrag		2001/02 - 2013/14	7 Rotationen

Auswertung je Jahr:
$$\underline{y}_{ijk} = \mu + \eta_k + \alpha_i + \beta_j + \omega_{ij} + \underline{\varepsilon}_{ijk}$$

proc mixed DATA=SM; /* WRK WRS FW */
class MinN OrgN Block;

j=1,...,5 (b)
k=1,...,4 (n)

model TM = MinN OrgN MinN*OrgN Block / ddfm=kr;
* repeated / group = MinN;

* repeated / group = OrqN;

* repeated / group = MinN*OrgN;

by Jahr; /* Rotation */

lsmeans MinN*OrgN / adjust=T;

run;

Merkmal	#	S _{Rest} %	# Signif	ikanzen ir	n F-Test <i>(jew. Be</i>	estmodell)
Merkinai	Total	(var.homog.)	MinN	OrgN	MinN x OrgN	Block
SM	11	6.3 - 14.5	10	11	9	8
WRK	7	8.3 - 16.8	7	7	6	7
WRS	7	12.5 - 31.1	7	6	4	4
FW	7	6.0 - 11.6	7	7	6	4
Summe	32		31	31	25	23

Auswertung im Mittel der Jahre:
$$\underline{y}_{ijk} = \mu + \eta_k + \alpha_i + \beta_j + \omega_{ij} + \underline{\epsilon}_{ijk}$$
 (y_{ijk} : Parzellenmittelwerte)

Paarweise Vergleiche mit LSD-Test ($\alpha = 0.05$)

- Fruchtwechselertrag (2001-2010)
 - höchstes Ertragsmittel bei Düngungskombination: 100 MinN + 150 OrgN
- Silomaisertrag (2001-2009)
 - höchstes Ertragsmittel bei Düngungskombination: 200 MinN + 100 OrgN
- WR-Kornertrag (2002-2010)
 - höchstes Ertragsmittel bei Düngungskombination: 100 MinN + 100 OrgN
- WR-Strohertrag (2002-2010)
 - höchstes Ertragsmittel bei Düngungskombination: 200 MinN + 100 OrgN

t-Test eigentlich kritisch, da kein echter multipler Test (zu viele Signifikanzen)

Dennoch:

Für alle Merkmale konnten für höher gedüngte Prüfglieder keine sign. Unterschiede festgestellt werden, weder sign. Ertragszunahmen noch sign. Ertragsabnahmen.

Mögliche Modellansätze: Ertrag als Funktion der N-Düngung

(1) Gesamtdüngung

(2) MinN (OrgN konstant)

(3) **OrgN** (MinN konstant)

Ertrag =
$$f(MinN+OrgN,\theta)+\epsilon$$

Ertrag =
$$f(OrgN;\theta)+\epsilon$$

	_		
			_
			- 1
			- 1
			- 1
			- 1
		_	
		\	
		_	_


PG	SM	WR	Rotation
Ø	60%	40%	100%
0	0	0	0
100	160	40	200
200	320	80	400
300	480	120	600
400	640	160	800

PG	SM	WR	Rotation	
Ø	60%	40%	100%	
0	0	0	0	
50	60	40	100	
100	120	80	200	
150	180	120	300	
200	240	160	400	

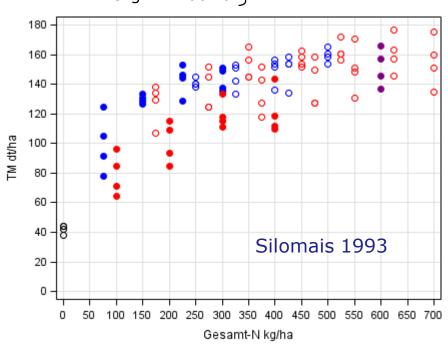
PG	SM	WR	Rotation	
Ø	100%	0%	100%	
0	0	0	0	
50	100	0	100	
100	200	0	200	
150	300	0	300	
200	400	0	400	

Welche N-Mengen für x einsetzen:

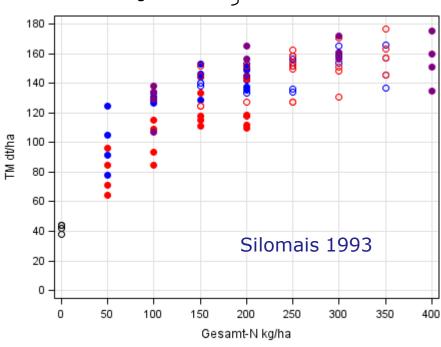
- die zur jeweiligen Fruchtart tatsächlich gedüngte Menge?
- Ø Menge laut PG-Beschreibung?

(4) MinN und OrgN

Ertrag = $f(MinN,OrgN;\theta)+\epsilon$



(1) Gesamtdüngung: Ertrag =
$$f(MinN + OrgN, \theta) + \epsilon$$


N-Menge zu Silomais 1993 gedüngt:

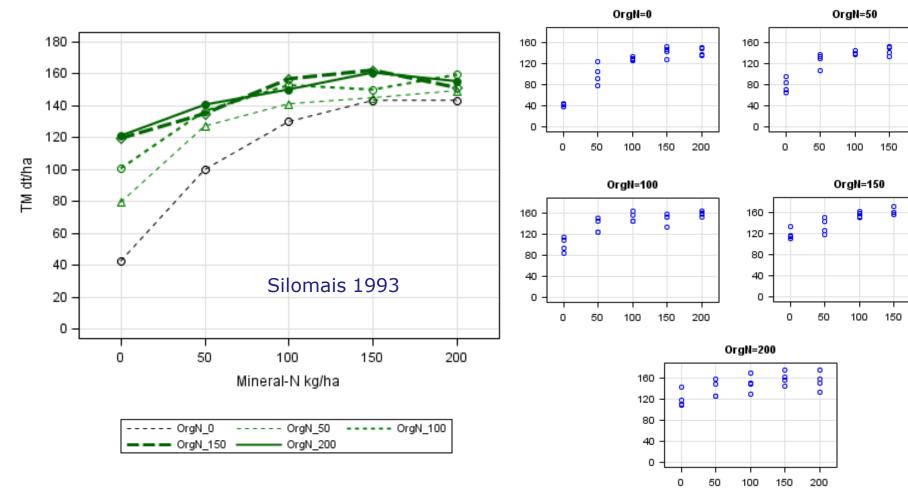
$$\begin{array}{ccc}
MinN = & 60 \% \\
OrgN = & 100 \%
\end{array}$$

Ø N-Menge laut PG-Beschreibung:

$$\left\{ \begin{array}{l}
 \text{MinN} = 50 \% \\
 \text{OrgN} = 50 \%
 \end{array} \right\} \text{ der Rotation}$$

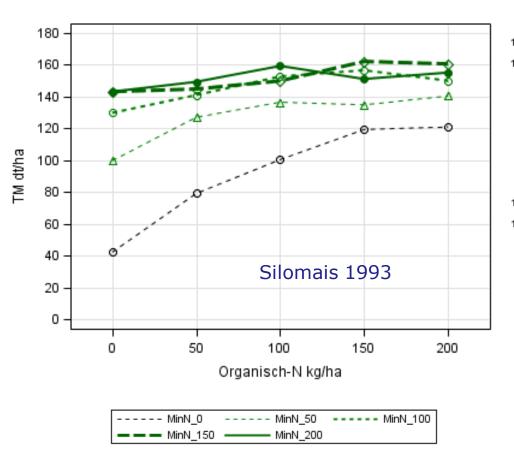
O Null • MinN O MinN_org • OrgN O OrgN_min • MinN_OrgN

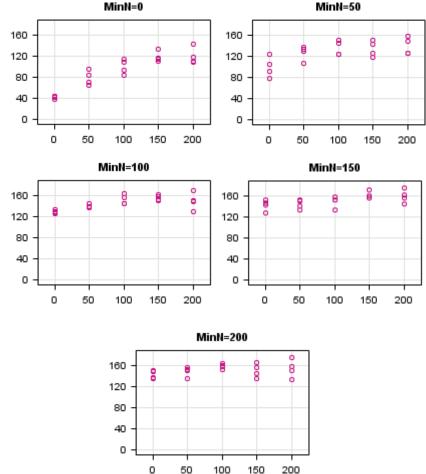
Aber: unterschiedliche Düngewirkung von MinN und OrgN



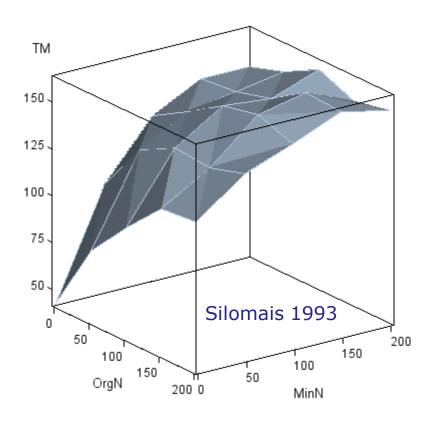
Summenbildung unsinnig

(2) MinN (OrgN konstant): Ertrag = $f(MinN;\theta)+\epsilon$


200


200

(3) OrgN (MinN konstant): Ertrag = $f(OrgN;\theta)+\epsilon$



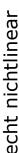
(4) OrgN und MinN: $Ertrag = f(MinN,OrgN;\theta)+\epsilon$

Einschub: Wahl geeigneter Modellansätze (Kandidatenliste)

Funktion (# Parameter)

mit zunehmendem **X** (**N-Menge**) folgt für

[Beachte: nur 5 N-Stufen!]


y (Ertrag)

Δy (Ertragsänderung)

near

ج ا

quasilinear

• Linear (2)

$$\hat{y} = b_0 + b_1 x$$

unbegrenzte Zunahme

konstant

• Quadratisch (3)

$$\hat{y} = b_0 + b_1 x - b_2 x^2$$

Maximum:
$$x_{Max} = \frac{b_1}{2b_2}$$

Zunahme bis Maximum, danach Abnahme

linear

• Mitscherlich (3)

$$\hat{y} = y_{\min} + (y_{\max} - y_{\min}) \cdot (1 - e^{-c \cdot x})$$

Zunahme bis Endzustand

zunächst maximal, nimmt kontinuierlich ab

 Logistisch (3) reparametrisiert als

Tangenshyperbolikusfunktion:

$$\hat{y} = \frac{y_{\infty}}{2} [1 + \tanh[c \cdot (x - b)]]$$

Wendepunkt:
$$x_W = b$$
 $y_W = \frac{y_\infty}{2}$

Zunahme bis Endzustand

nimmt bis zum
Wendepunkt zu
(maximaler Zuwachs),
danach kontinuierlich ab

Einschub: Modellanpassungskriterien

Restvarianz

$$s_{Rest}^2 = \frac{SQ_{Rest}}{n-p}$$

Bestimmtheitsmaß

$$B = 1 - \frac{SQ_{Rest}}{SQ_{Modell} + SQ_{Rest}}$$

- → nichtlineare Funktionen: "Pseudo-R2"
- → nicht verwenden (p und n werden nicht berücksichtigt)

adjustiertes Bestimmtheitsmaß

$$B_{\text{adj}} = 1 - \frac{SQ_{\text{Rest}}}{SQ_{\text{Modell}} + SQ_{\text{Rest}}} \cdot \frac{(n-1)}{(n-p)}$$

→ nichtlineare Funktionen: "Pseudo-R_{adj}²"

$$AIC = n \cdot ln \left(\frac{SQ_{Rest}}{n} \right) + 2p$$

$$AIC = n \cdot In \left(\frac{SQ_{Rest}}{n} \right) + \frac{2 p n}{n - p - 1}$$

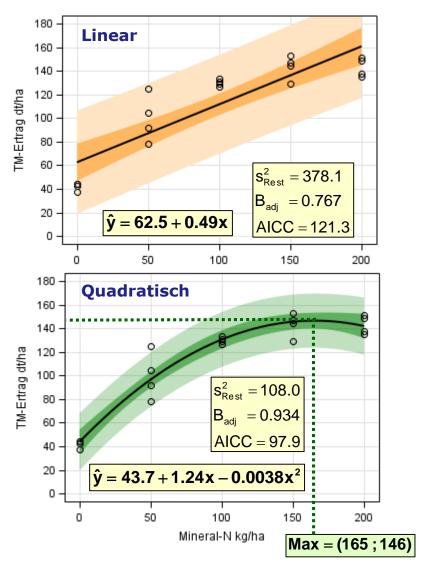
→ für kleine n (AICC immer dem AIC vorziehen)

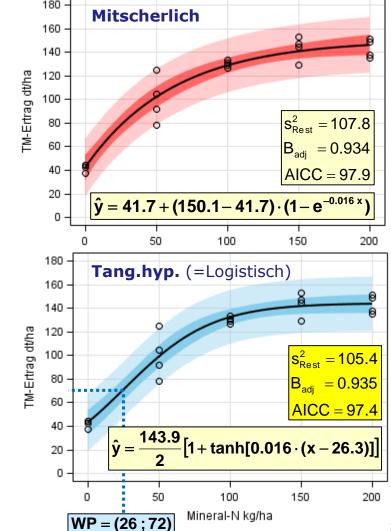
n – Stichprobenumfang (Anzahl Wertepaare)

p – Anzahl Parameter

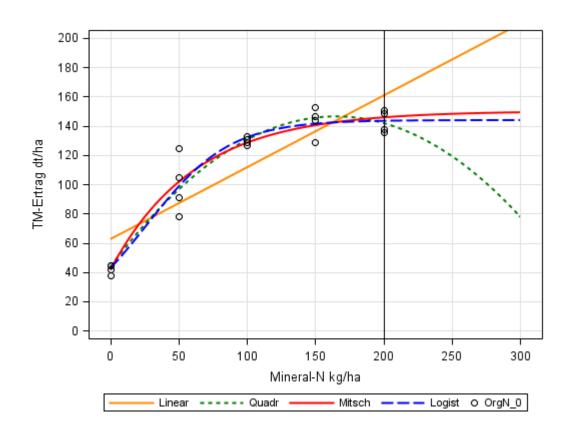

```
(2a) OrgN = 0: Ertrag = f(MinN;\theta)+\epsilon
```

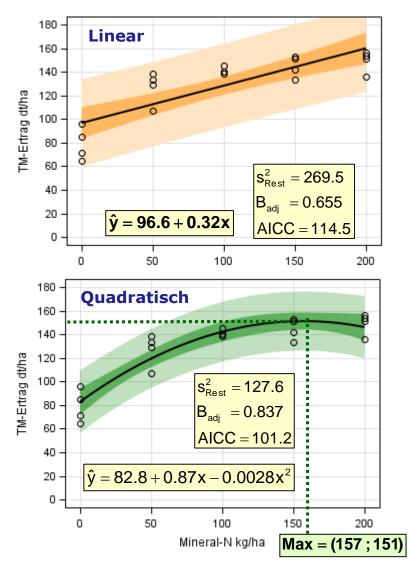
```
/* Lineare Funktion */
proc reg data=SM plots=(fit);
model TM = MinN / clb cli clm;
where OrgN = 0;
run;
```

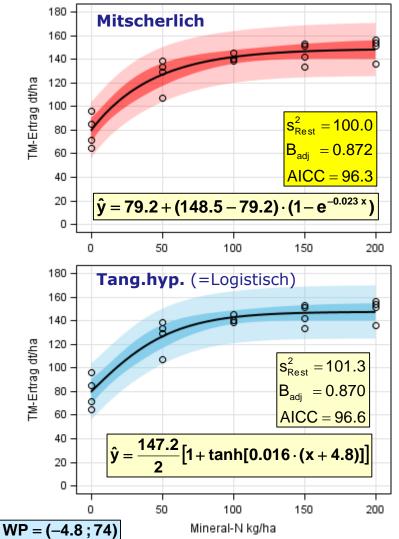

```
/* Quadratische Funktion */
data SM;
set SM;
MinN2 = MinN**2;
run;


proc reg data=SM plots=(fit);
model TM = MinN MinN2 / clb cli clm;
where OrgN = 0;
run;
```

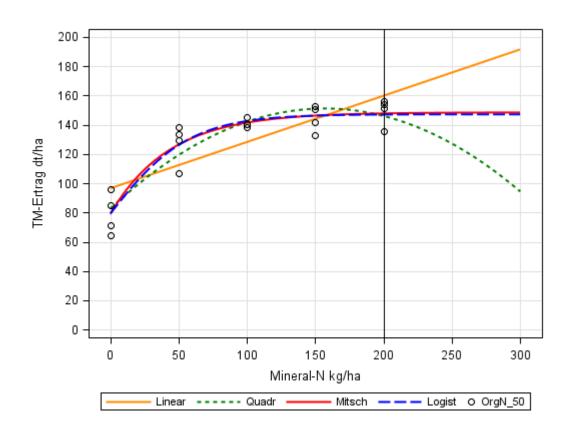

(2a) OrgN = 0: Ertrag =
$$f(MinN;\theta)+\epsilon$$

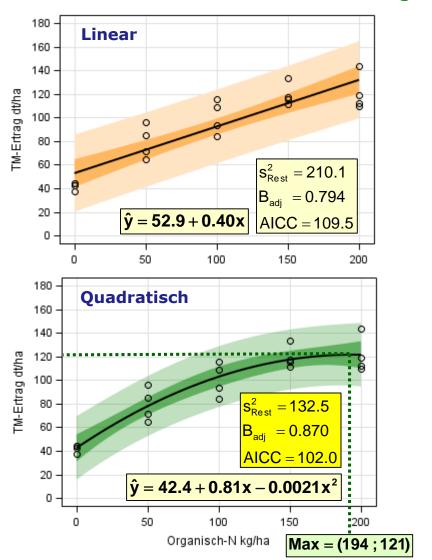


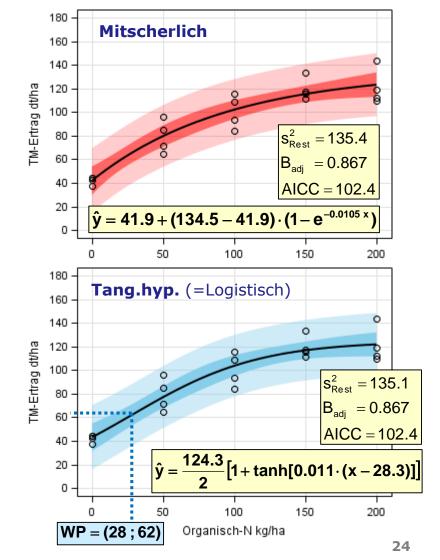

(2a) OrgN = 0: Ertrag =
$$f(MinN;\theta)+\epsilon$$



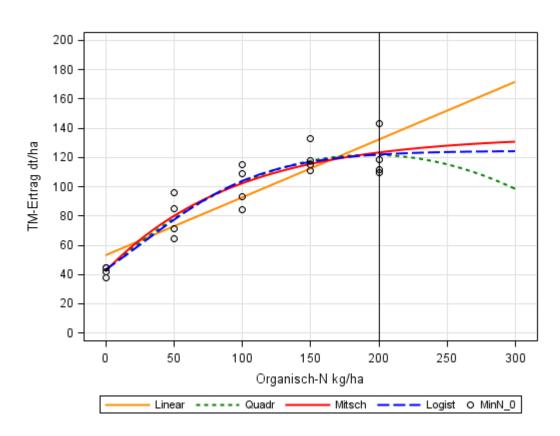
(2b) OrgN = 50: Ertrag =
$$f(MinN;\theta)+\epsilon$$



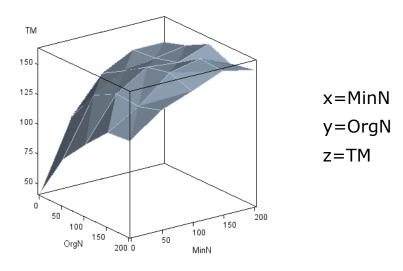

(2b) OrgN = 50: Ertrag =
$$f(MinN;\theta)+\epsilon$$

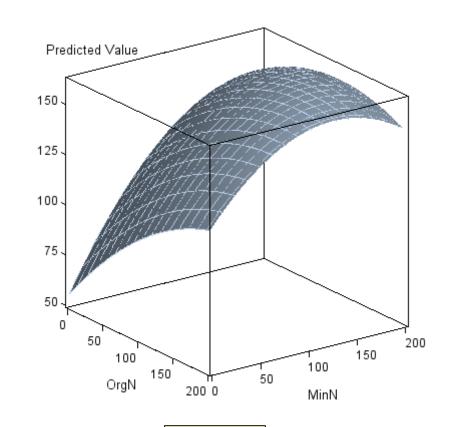


(3) MinN = 0: Ertrag = $f(OrgN;\theta)+\epsilon$



(3)
$$MinN = 0$$
: Ertrag = $f(OrgN;\theta)+\epsilon$





(4) Ertrag =
$$f(MinN,OrgN;\theta)+\epsilon$$

$$\hat{z} = b_0 + b_1 x + b_2 x^2 + b_3 y + b_4 y^2 + b_5 x y$$

 $s_{Rest}^2 = 148.1$

$$B_{adj} = 0.831$$
AICC = 505.6

$$\hat{z} = 55.8 + 0.92 x + 0.54 y - 0.0024 x^2 - 0.0011 y^2 - 0.0015 x y$$

Ausblick

- Berücksichtigung von Varianzhomogenität?
- Berücksichtigung der Blockeffekte?
- Vergleich der Prüfglieder?

Literatur

ARCHONTOULIS, S.V., MIGUEZ, F.E. (2015): **Nonlinear Regression Models and Applications in Agricultural Research.** Agronomy Journal 107, S. 786-798.

SCHABENBERGER, O., PIERCE, J.P. (2002):

Contemporary Statistical Models for the Plant and Soil Scientific Sci

 ${\bf Contemporary\ Statistical\ Models\ for\ the\ Plant\ and\ Soil\ Sciences.\ CRC\ Press.}$

MOLL, E.; GRÖGER, J.; LIESEBACH, M.; RUDOLPH, P.E.; STAUBER, T. und ZILLER, M. (Herausgeber): **Einführung in die Biometrie.** Saphir Verlag 2004

Heft 4: RASCH, D.; VERDOOREN, R.: Grundlagen der Korrelationsanalyse und der Regressionsanalyse