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Extending the PRA to 2 hazardous conditions or more Extending the PRA to 2 hazardous conditions or more 



Extending the PRA to 2 hazardous conditions or more Extending the PRA to 2 hazardous conditions or more 

Drought level 

(or category) 1

Drought level 

(or category) 2



Multi-threshold PRAMulti-threshold PRA

Retrieving total 

(single-threshold) 

PRA



‘PRAm’: R-function for multi-threshold PRA‘PRAm’: R-function for multi-threshold PRA

PRAm <- function( x, z, thr=-1:1 ) {

n         <- length(x) ; n_thr <- length(thr)

n_H <- pH <- V <- R <- s_pH <- s_V <- s_R <- rep(NA,n_thr)

H         <- vector("list",n_thr)

H[[1]]    <- which( x < thr[1] ) ; n_H[1] <- length(H[[1]])

for(i in 2:n_thr) { H[[i]] <- which( thr[i-1] <= x & x < thr[i])

n_H[i] <- length(H[[i]]) }

n_notH <- n - sum(n_H) ; H.all <- which( x < thr[n_thr] )

pH        <- n_H / n      ; s_pH <- sqrt( pH*(1-pH) / n )

Ez_notH <- mean( z[-H.all] )

s_Ez_notH <- sqrt( var(z[-H.all] ) / n_notH )   

for(i in 1:n_thr) { Ez_Hi <- mean( z[ H[[i]]])

s_Ez_Hi <- sqrt( var(z[ H[[i]]]) /  n_H[i] )

V[i]    <- Ez_notH - Ez_Hi

s_V[i]  <- sqrt( s_Ez_notH^2 + s_Ez_Hi^2 ) }

R         <- pH * V

s_R <- sqrt( s_pH^2 * s_V^2 + s_pH^2 * V^2 + pH^2 * s_V^2 )

R.sum <- sum(R) ; pH.sum <- sum(pH) ; V.wsum <- R.sum / pH.sum

return( list( sum = c( pH.sum=pH.sum, V.wsum=V.wsum, R.sum=R.sum ),

seq = cbind( thr, pH, V, R, s_pH, s_V, s_R ) ) )

}

PRAm <- function( x, z, thr=-1:1 ) {

n         <- length(x) ; n_thr <- length(thr)

n_H <- pH <- V <- R <- s_pH <- s_V <- s_R <- rep(NA,n_thr)

H         <- vector("list",n_thr)

H[[1]]    <- which( x < thr[1] ) ; n_H[1] <- length(H[[1]])

for(i in 2:n_thr) { H[[i]] <- which( thr[i-1] <= x & x < thr[i])

n_H[i] <- length(H[[i]]) }

n_notH <- n - sum(n_H) ; H.all <- which( x < thr[n_thr] )

pH <- n_H / n      ; s_pH <- sqrt( pH*(1-pH) / n )

Ez_notH <- mean( z[-H.all] )

s_Ez_notH <- sqrt( var(z[-H.all] ) / n_notH )   

for(i in 1:n_thr) { Ez_Hi <- mean( z[ H[[i]]])

s_Ez_Hi <- sqrt( var(z[ H[[i]]]) /  n_H[i] )

V[i]    <- Ez_notH - Ez_Hi

s_V[i] <- sqrt( s_Ez_notH^2 + s_Ez_Hi^2 ) }

R <- pH * V

s_R <- sqrt( s_pH^2 * s_V^2 + s_pH^2 * V^2 + pH^2 * s_V^2 )

R.sum <- sum(R) ; pH.sum <- sum(pH) ; V.wsum <- R.sum / pH.sum

return( list( sum = c( pH.sum=pH.sum, V.wsum=V.wsum, R.sum=R.sum ),

seq = cbind( thr, pH, V, R, s_pH, s_V, s_R ) ) )

}



Forest survival data from GermanyForest survival data from Germany

Drought-

threshold



Forest survival data from GermanyForest survival data from Germany

Drought-

thresholds

H1 H2



Forest data from Germany: Multi-threshold PRAForest data from Germany: Multi-threshold PRA



Forest data from Germany: EXERCISE 2Forest data from Germany: EXERCISE 2

1. Change code: choose a series of multiple thresholds.

2. Discuss limitations of the multiple-threshold-PRA.



Forest data from Germany: EXERCISE 2Forest data from Germany: EXERCISE 2

1. Change code: choose a series of multiple thresholds.

2. Discuss limitations of the multiple-threshold-PRA. 

Possible answers:

• Mostly the same as for the single-threshold PRA.

• Low n even more critical here?

• …



Multi-threshold PRA on a rich datasetMulti-threshold PRA on a rich dataset



Continuous single-threshold PRA: Bivariate GaussianContinuous single-threshold PRA: Bivariate Gaussian

Retrieving total 

(single-threshold) PRA



Loss distribution: Useful or not?Loss distribution: Useful or not?



Continuous zero-threshold PRA: nonlinear modelContinuous zero-threshold PRA: nonlinear model



Discretizing a continuous PRADiscretizing a continuous PRA



Extending the PRA from 2 risk-components to 3Extending the PRA from 2 risk-components to 3

64 different

2-component 

PRAs at cell level:

1 single

3-component PRA

at regional level:

P[H] = 

0.27
V = 

0.26

Q = 

37/64

R = 

0.04



Extension to R = Q p[H] VExtension to R = Q p[H] V

R = p[H] V

g m-2 y-1 g m-2 y-1-

R = Q p[H] V

g y-1 g m-2 y-1-m2

Q = area (or # individuals) 

exposed to the risk factor



Three-component PRAThree-component PRA

x in year 1:8

z in year 1:8

thr = 0.25

Q = 7/16



Three-component PRAThree-component PRA

PRA3 <- function( x=array(dim=c(nlon,nlat,n_t)),

z=array(dim=c(nlon,nlat,n_t)), thr.=thr ) {

ns    <- prod( dim(x)[1:2] ) ; n_t <- dim(x)[3]

freqH <- function(x,thr.=thr){ sum(x<thr.) }

n_tH <- apply(x, c(1,2), freqH)

siteQ <- which( n_tH > 0, arr.ind=TRUE ) ; nQ <- dim(siteQ)[1]

Q     <- nQ / ns ; s_Q <- sqrt( Q*(1-Q) / ns )

xQ <- sapply( 1:n_t, function(i){x[,,i][siteQ]} )

zQ <- sapply( 1:n_t, function(i){z[,,i][siteQ]} )

PRAQ  <- PRA( c(xQ), c(zQ), thr. )

pH    <- PRAQ["pH"]   ; V   <- PRAQ["V"]   ; R.Q   <- PRAQ["R"]

s_pH <- PRAQ["s_pH"] ; s_V <- PRAQ["s_V"] ; s_R.Q <- PRAQ["s_R"]

R     <- Q * R.Q

s_R <- sqrt( s_Q^2*s_R.Q^2 + s_Q^2*R.Q^2 + Q^2*s_R.Q^2 )

result           <- c(  Q ,  pH ,  V ,  R ,  s_Q ,  s_pH ,  s_V ,  s_R )

names ( result ) <- c( "Q", "pH", "V", "R", "s_Q", "s_pH", "s_V", "s_R" )

return( result ) }



x in year 1:8

z in year 1:8

thr = 0.25

Q = 7/16

Q     pH    V     R

0.438 0.268 0.190 0.022

s_Q s_pH s_V s_R

0.124 0.059 0.020 0.009 

Three-component PRAThree-component PRA



Three-component PRA ScotlandThree-component PRA Scotland



Hazardousness can be complicated !Hazardousness can be complicated !

• More than 1 relevant hazard variable

• Effects that depend on hazard time-scale

• Effects that depend on hazard spatial distribution 

Hazard modelling:

• Fault-tree analysis (FTA)

• Graphical modelling for p[H] or { p[ H1, .. ,Hn ] }

• Copulas

• Extreme-value theory, Generalized extreme value 

distributions

• Trivariate Gaussian p[x1,x2,z] generally too simple …



Liu et al. (2020). A new risk probability calculation method for urban ecological risk assessmentLiu et al. (2020). A new risk probability calculation method for urban ecological risk assessment

Joint distribution 

formed by copula

Two marginal hazard 

distributions



PRA for heatwaves (thr = 30C) as f(mean(T),sd(T))PRA for heatwaves (thr = 30C) as f(mean(T),sd(T))



Chen et al. (2020). The collapse points of increasing trend of vegetation rain-use efficiency under droughtsChen et al. (2020). The collapse points of increasing trend of vegetation rain-use efficiency under droughts



Chatzopoulos et al. (2021). Potential impacts of concurrent and recurrent climate extremes on 

the global food system by 2030

Chatzopoulos et al. (2021). Potential impacts of concurrent and recurrent climate extremes on 

the global food system by 2030

• Concurrent climate extremes

• Recurrent climate extremes

Vglob = f(spatial distrib. of H)

Vglob = f(temporal distrib. of H)



Two-hazard sampling-based PRATwo-hazard sampling-based PRA

PRAi <- function( xz, thr=c(0,0) ) {

x1      <- xz[,1]  ; x2 <- xz[,2] ; z <- xz[,3]

n_c <- 2^2 - 1 ; n  <- length(x1)

H       <- vector("list",n_c)

n_H <- pH <- V <- R <- s_pH <- s_V <- s_R <- rep(NA,n_c)

H[[1]]  <- which(x1 <  thr[1] & x2 <  thr[2]) ; n_H[1] <- length(H[[1]])

H[[2]]  <- which(x1 <  thr[1] & x2 >= thr[2]) ; n_H[2] <- length(H[[2]])

H[[3]]  <- which(x1 >= thr[1] & x2 <  thr[2]) ; n_H[3] <- length(H[[3]])

NotH <- which(x1 >= thr[1] & x2 >= thr[2]) ; n_NotH <- length(NotH)

pH      <- n_H / n         ; s_pH <- sqrt( pH*(1-pH) / n )

Ez_NotH <- mean( z[NotH] ) ; s_Ez_NotH <- sqrt( var(z[NotH] ) / n_NotH )   

for(i in 1:n_c) {

Ez_Hi <- mean( z[ H[[i]] ] )

s_Ez_Hi <- sqrt( var ( z[ H[[i]] ] ) / n_H[i] )

V[i]    <- Ez_NotH - Ez_Hi

s_V[i]  <- sqrt( s_Ez_NotH^2 + s_Ez_Hi^2 ) }

R       <- pH * V

s_R <- sqrt( s_pH^2 * s_V^2 + s_pH^2 * V^2 + pH^2 * s_V^2  )

R.sum <- sum(R) ; pH.sum <- sum(pH) ; V.wsum <- R.sum / pH.sum

return( list( sum = c( pH.sum=pH.sum, V.wsum=V.wsum, R.sum=R.sum ),

cat = cbind( 1:3, pH, V, R, s_pH, s_V, s_R ) ) ) }



Two-hazard PRA (Trivariate Gaussian example)Two-hazard PRA (Trivariate Gaussian example)

1.000 0.499  0.493

0.499 1.000  0.519

0.493 0.519  1.000

0.006 0.001 -0.024

Mean vector

Covariance matrix

x1 x2 z

z

x1

x1

>   PRAi(xz_G3,c(0,0))$cat

pH     V     R  s_pH s_V s_R

[1,] 1 0.342 1.226 0.419 0.015 0.071 0.030

[2,] 2 0.160 0.625 0.100 0.012 0.083 0.015

[3,] 3 0.159 0.687 0.109 0.012 0.088 0.016

> PRAi(xz_G3,c(0,0))$sum

pH.sum V.wsum R.sum

0.661  0.951  0.629



EXERCISEEXERCISE

set.seed(1)

n  <- 1e2

x1 <- rbeta( n, 3, 3 ) ; x2 <- rbeta( n, 3, 3 )

z  <- as.integer( x1 >= 0.5 | x2 >= 0.5 )

xz <- cbind( x1, x2, z )

• Create the following dataset:

• Study the dataset. R-command: pairs(xz)

• Run PRAi on this dataset using thr=c(0.5,0.5)

• Explain the results, especially for V and s_V

➢ PRAi( xz, c(0.5,0.5) )$cat

pH V R  s_pH s_V s_R

[1,] 1 0.25 1 0.25 0.043   0 0.043

[2,] 2 0.22 0 0.00 0.041   0 0.000

[3,] 3 0.33 0 0.00 0.047   0 0.000
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Bayesian Decision Theory (BDT)Bayesian Decision Theory (BDT)

• BDT is the application of probability theory to decision making in 

situations of uncertainty

• Two concepts: probability & utility

• Three ingredients:

1. List or continuum of possible actions a ∈ A

2. List or continuum of external conditions x ∈ X

• These are uncertain: we have p[x]

3. A utility function u(a,x)

• Our preference: high values of u(a,x)

• Our decision: action a* that maximises ത𝑢(a) = E[u(a,x)]

• BDT is related to but different from PRA

• Our examples are of BDT in (forest) management decision-making

• We will not discuss other well-known applications of BDT:

• Parameter estimation: cost = minus utility = f(estimation error) 

(Bernardo & Smith 2000)

• Causal analysis: causality = impact of intervention on utility 

(Dawid 2021)



Graphical models: From PRA to BDTGraphical models: From PRA to BDT

z

x

z

xa

u

p[x,z] =

p[x] p[z|x]

p[x,z,u|a] =

p[x] p[z|a,x] p[u|a,z]

PRA BDT



Decision treeDecision tree

a

ഥ𝒖(a1) = 37%

ഥ𝒖(a2) = 43%

u11 = 100%

u12 = 10%

u21 =50%

u22 =40%

u = Tree survival

We choose a2 !



Sequential decisionsSequential decisions

a



Utility matrix for discrete u(a,x)Utility matrix for discrete u(a,x)

z

xa

u

x = x1 x = x2

a = a1 u(a1,x1) u(a1,x2)

a = a2 u(a2,x1) u(a2,x2)

% Tree 

survival

No 

beetles
Beetles

No thin 100% 10%

50% thin 50% 40%

ഥ𝒖(a) = ∑p[x] u(a,x)

p1 u(a1,x1) + p2 u(a1,x2)

p1 u(a2,x1) + p2 u(a2,x2)

ഥ𝒖(a)
if p[x = x2 = Beetles] = 0.7

0.3×100 + 0.7×10 = 37% 

0.3×50 + 0.7×40 = 43% 

We choose a2 !



Value of Information: Impact on expected utilityValue of Information: Impact on expected utility

Only prior information p[x]:

Specific information y:

Information yet to be 

received Y = {y}:

‘Perfect’ information so you 

can always (for every x) 

choose the best action:



Value of Information in the tree beetle exampleValue of Information in the tree beetle example

z

xa

u

If y = {y1,y2} and

p[y1|x1] = p[y2|x2] = 0.6

VoIpartial = 43.6 – 43 = 0.6%

VoIperfect = 58 – 43 = 15%



EXERCISE - Value of bad Information …EXERCISE - Value of bad Information …

What would happen to VoIpartial if p[y1|x1] = p[y2|x2] = 0.5?



Graphical models: From PRA to BDTGraphical models: From PRA to BDT

z

x

z

xa

u

z

xa

u

benefitcost

z

xa

u

benefitcost

𝜺

p[x,z] =

p[x] p[z|x]

p[x,z,u|a] =

p[x] p[z|a,x] p[u|a,z]

z = f(a,x,𝝑) + 𝜺
p[x], p[𝝑], p[𝜺]

PRA BDT



BDT for forestryBDT for forestry

z

xa

u

benefitcost

𝜺 Model error

Model parameters

Management 

costs

Management 

actions

Timber 

sale

Utility

Forest 

growth

Climate



Two realisations of the networkTwo realisations of the network

z

xa

u

benefitcost

𝜺

Rain = 600 

mm y-1

Irrigation = 0 

mm y-1

WUE = 0.01

m3 ha-1 mm-1

z = 0.01 (x + a)

u = 30 z - 0.5 a

YC Rain

Irrigation

Model

Timber

price

Irrigation 

costs

WUE

YC = 6

m3 ha-1 y-1

£ 0.00

ha-1 y-1

£ 180.00 

ha-1 y-1

£ 180.00 

ha-1 y-1

400

--

200.00

-----

10

---

300.00

--------

100.00

--------

𝜺 = 0

m3 ha-1 y-1



BDT with continuous nonlinear z-response functionBDT with continuous nonlinear z-response function

z

xa

u

benefitcost

𝜺

u <- function( a, x=1, t=1, e=0, ka=0.2, kz=1 ) {

z    <- t*(1-exp(-a-x)) + e

cost <- ka*a ; benefit <- kz*z

return( benefit - cost ) }



BDT with continuous nonlinear z-response functionBDT with continuous nonlinear z-response function

Medium uncertainty High uncertaintyLow uncertainty



A spatial BDT exampleA spatial BDT example

Models for z = forest yield 

class (m3 ha-1 y-1), and u:
YC = 10 * (1-exp(-water/1000)) * (1–altitude/1000)

u = 30 * YC - 0.1 * IRRIG 



Gonzales-Redin et al. (2016)Gonzales-Redin et al. (2016)

Gonzalez Redin, J. et al. (2016). Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem 

services trade-offs on forested landscapes. Environmental Research 144: 15-26.
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A spatial BDT exampleA spatial BDT example

Models for z = forest yield 

class (m3 ha-1 y-1), and u:

YC  = 10 * (1-exp(-water/1000)) * (1–altitude/1000)

u = 30 * YC - 0.1 * IRRIG 

thr = 1000 mm y-1



Maximizing utility vs. minimizing riskMaximizing utility vs. minimizing risk

PRA: irrigation reduces R to nearly zero everywhere…

Why did the BDT then only suggest irrigation in the North?

⇒ minimizing R is not the same as maximizing E[u].

We define ‘Risk corrected for costs and benefits’ as:



BDT with continuous nonlinear z-response functionBDT with continuous nonlinear z-response function
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Theory development: PRA & BDTTheory development: PRA & BDT

Riskp(Drought) Vulnerability

Risk = Expected loss = probability(Hazard) * VulnerabilityProbabilistic 

Risk Analysis 

(PRA)

Bayesian 

Decision 

Theory

(BDT)



Two questions …Two questions …

Main questions to all:

• What is missing from these lectures and/or VO & B (2022)?

• Which of the methods could you use in your own work?



Complications: Analysis of z, H and V (Lecina-Diaz et al. 2020)Complications: Analysis of z, H and V (Lecina-Diaz et al. 2020)



Complications: Analysis of z, H and V (Lecina-Diaz et al. 2020)Complications: Analysis of z, H and V (Lecina-Diaz et al. 2020)



Data & Process-Based Modelling (PBM)Data & Process-Based Modelling (PBM)

Data

• Performance of conifer spp. in UK, Spain, Finland

• Environmental conditions (soil, past & future climate)

• Forest management

PBM

• BASFOR, 3PGN, …

• Quantifying past & future forest performance

• Analysing forest vulnerability to drought

• Analysing impacts of management

• Model drivers

• Model test data

• Model calibration data



Process-models for forest drought vulnerabilityProcess-models for forest drought vulnerability

• Climate models (GCMs)

• Process-based forest models 

(BASFOR, 3PGN, …)

• Identify key factors that drive 

present and future forest drought 

vulnerability

• Forest data to test and calibrate 

the models 

• Bayesian Calibration to reduce 

uncertainties in model parameters 

• Bayesian Model Comparison to 

reduce uncertainty in model error



Project flowchart & Decision Support System (DSS)Project flowchart & Decision Support System (DSS)

PBM

Data PRA

BDT

DSS

Need to know where/what to plant to 

ensure 'climate-smart' forestry



Issues to discussIssues to discuss

1. Which type of PRA to choose?
• Nature of x and z, Main questions of interest, Available data and model output

2. Data needs and computational demand of PRA
• Data needs and computational demand: model-based > distr.-based > sampling-based

• Data needs: increasing when p[x,z] varies over time and/or space

• Need for ‘extreme’ data

• Model error = f(x)

3. BDT
• Agreed-upon utility function?

4. Computational demand of BDT
• High because: 1. Quadruple iteration (actions, parameters, space, time), 2. Slow models 

5. PRA as a tool for simplifying and elucidating BDT
• PRA can be decomposed ⇒ easier to explain? BDT more relevant to decision-making

6. Parameter and model uncertainties
• Bayesian calibration and Bayesian model comparision: effective but data-hungry and 

slow

7. Modelling, PRA and BDT for forests
• Complex system requiring multi-hazard, multi-benefit approach

8. Spatial statistics
• Spatially correlated hazards ⇒ Regional risk is not the sum of local risks. [Hochrainer-

Stigler et al. (2019) used a PBM, EVT & copulas to upscale drought risk in space & time.]
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Condition for V being threshold-independentCondition for V being threshold-independent



Six datasets where E[z|x] = a + b Fx[x]Six datasets where E[z|x] = a + b Fx[x]

x_U <- runif(n)     ; z_U <- 0.5 + x_U/2               + rnorm(n,0,0.05)

x_E <- rexp(n)      ; z_E <- 1   - exp(-x_E)/2         + rnorm(n,0,0.05)

x_B <- rbeta(n,5,1) ; z_B <- 0.5 + pbeta(x_B,5,1)/2    + rnorm(n,0,0.05)

x_t <- rt(n,1,30)   ; z_t <- 0.5 + pt(x_t,1,30)/2      + rnorm(n,0,0.05)

x_G <- rnorm(n)     ; z_G <- 0.5 + pnorm(x_G)/2        + rnorm(n,0,0.05)

x_L <- rnorm(n)     ; z_L <- 0.5 + 0.5/(1+exp(-2*x_L)) + rnorm(n,0,0.05)

b Fx[x]x p[x] a 𝜺z

We now will do single-threshold PRA on each of these six datasets.

We vary the location of the threshold: 5% quantile of x, 10%, …, 95%.

(So p[H] will vary accordingly.)



Single-threshold PRA on the six datasetsSingle-threshold PRA on the six datasets



EXERCISEEXERCISE

What kind of figures do you expect to see if we 

carry out multi-threshold PRA on these six 

datasets, using the same 19 threshold levels to 

define our x-intervals?

1. Would V still be constant, i.e. independent 

of the x-interval?

2. How would p[H] vary between the 

intervals?



Multi-threshold PRA with equal-p[H] intervalsMulti-threshold PRA with equal-p[H] intervals



Multi-threshold PRA with equal-x-width intervalsMulti-threshold PRA with equal-x-width intervals



Absolute or relative?Absolute or relative?

Absolute units (m3 ha-1 y-1, kg, €, £, …)

Relative units (%)


