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Summary

Problem: Markov Chain Monte Carlo (MCMC) performance depends strongly on posterior
geometry (multimodality, correlation, dimensionality, tail weight). Guidance is fragmented and
often heuristic.

Approach: MC-FiT: define synthetic posteriors directly, vary attributes systematically, and
evaluate samplers against iid reference samples using distributional distances + diagnostics.

Contributions:

• A reusable, controlled benchmark framework for posterior geometries.

• Empirical mapping of attribute effects and break points for multiple samplers.

• Practical guidelines for sampler choice conditioned on anticipated geometry.
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Bayesian Inference & the Challenge

• Goal: characterize the posterior p(θ | D) ∝ p(D | θ)p(θ).
• Intractable evidence ⇒ approximate inference; MCMC widely used.

• Real constraint: finite compute budgets ⇒ need to know when we get accurate samples.

• Poor approximation ⇒ biased estimates, misleading uncertainty.

• Key insight: posterior geometry drives sampler efficiency/accuracy.

Geometry attributes studied: multimodality, dimensionality, correlation, tail weight.

4/28



Multimodality: Chains Get Stuck
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θ

samples current sample proposal target posterior

Problem: Low-density valleys block transitions.
Consequence: Chains remain stuck in one mode ⇒ biased samples.
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High Dimensionality & the Typical Set

Mode

Typical Set

Problem: In high dimensions, most mass lies in the thin typical set rather than at the mode.
Consequence: Proposals must be tuned to this scale, otherwise acceptance decays and chains mix poorly.
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Correlation / Curvature: Narrow Ridges

x1

x2

posterior contours sample isotropic proposal

Problem: Posterior mass lies along narrow ridges.
Consequence: Isotropic proposals waste moves orthogonal to the ridge ⇒ slow exploration.
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Heavy Tails: Slow Convergence
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θ

samples heavy-tailed target (Cauchy) light-tailed reference (Gaussian)

Problem: Proposals struggle to balance center and heavy tails.
Consequence: Chains under-sample tails ⇒ unstable, slow convergence.

8/28



Samplers (Quick Intro)

• Metropolis–Hastings (MH)1:
random-walk proposals + accept/reject.

• Hamiltonian Monte Carlo (HMC)2:
gradient-informed proposals + accept/reject.

• Differential Evolution Metropolis (DEM)3:
adaptive proposals from differences of two past samples (scaled).

• Sequential Monte Carlo (SMC) 4:
sequence of tempered distributions + resampling.

1Metropolis et al. (1953); Hastings (1970)
2Duane et al. (1987); Neal et al. (2011)
3Braak et al.(2006)
4Doucet et al. (2001)
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Existing Benchmarking Frameworks

PosteriorDB: realistic models + some reference posteriors; limited control over geometry.5

MCBench: synthetic targets + iid distances; limited set of fixed distributions.6

Gap: Need systematic, multi-attribute control (dim, correlation, tails, modes) with iid
references for accuracy and efficiency comparisons.

5Magnusson et al. (2024)
6Ding et al. (2025)
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MC-FiT: Concept

Idea: Define target posteriors directly (single or mixture of Normal / Student-t), then vary
attributes parametrically.

• Supports single and mixture posteriors.

• Initialization: uniform over iid-derived bounding box.
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Evaluation: Metrics & Rationale

Diagnostics (R̂, ESS) and efficiency (runtime, ESS/s).

Summary discrepancies: RMSE of per-dimension mean/variance vs. iid.

Distributional distances: Sliced Wasserstein Distance (SWD) (many 1D projections) and
Maximum Mean Discrepancy (MMD).

Why baselines?

• Even perfect samplers show non-zero finite-sample distance.

• Enables normalization (Glass’s ∆).
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Workflow per Posterior

Target Posterior SamplersIID Generator

for each sampler

for each run

Distributional Distances
and Summary Statistics

Distributional Distances
and Summary Statistics

for each run

A schematic view of one full posterior evaluation in MC-FiT.
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Glass’s ∆ (Effect Size Normalization)

Definition

∆ =
x̄MCMC − x̄IID

sIID

where x̄MCMC is the metric from sampler output, x̄IID and sIID are mean and std. from IID
baselines.

Intuition

• Accounts for finite-sample variability in baselines.

• ∆ ≈ 0: sampler indistinguishable from IID baseline.

• Larger ∆: stronger deviation .
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Design Overview

Experiment stages from single-attribute to multi-attribute combinations.

Value grids per attribute (dimension, correlation strength, tail weight, mode distance).

Protocol with fixed defaults (samples, chains, repetitions), identical random seeds Goal: reveal

thresholds / break points where performance changes sharply.
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Baseline: 2D Gaussian

• All samplers near IID baseline.
• HMC and SMC are the best

Base Case (2D Gaussian)
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Single-Attribute Effects

MH DEM HMC SMC

Corr
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10.23 3.35 0.776  0.041
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Dark green = closer to IID (better), red = worse.

Most important findings:

• SMC consistently best across all
attributes

• HMC strong overall, but struggles
with multimodality

• DEM fails badly with increasing
dimension

• MH weak under strong correlation
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Two-Attribute Interactions

MH DEM HMC SMC

Corr  MM

Corr  Tail

Dim  Corr

Dim  MM

Dim  Tail

Tail  MM

13.19 14.64 39.29  -0.009

12.20 4.50 2.12  0.040

48.61 1583.49 4.93  0.018

30.13 2152.84 63.79  -0.012

16.28 396.80  7.76 616.55

19.57 22.10 23.02  2.91
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Dark green = closer to IID (better), red = worse.

Most important findings:

• SMC strong overall, but collapses
for Dim × Tail

• HMC robust to dimensions/tails, but
fails under multimodality

• DEM consistently poor whenever
dimension is involved

• MH intermediate, handles
correlation × tails reasonably
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Three-Attribute Interactions

MH DEM HMC SMC

Corr  Tail  MM

Dim  Corr  MM

Dim  Corr  Tail

Dim  Tail  MM

11.29  5.94 6.27 6.14

57.50 1432.30 34.36  0.046

970.55 1541.12  15.00 513.98

31.06 571.30  20.69 1677.84
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Dark green = closer to IID (better), red = worse.

Most important findings:

• HMC most stable across triplets

• SMC loses dominance - struggles
with heavy tails

• DEM collapses, with one rare success
(Corr–Tail–MM)
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Four-Attribute Interactions

MH DEM HMC SMC

Corr,

Dim,

MM, 

Tail,

314.52 1018.94  13.31 2134.28

932.11 1989.08  10.54 4025.29

1650.79 1499.52  41.49 2529.85

1124.48 2640.89  34.09 5746.50
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Dark green = closer to IID (better), red = worse.

Most important findings:

• Fully stressed scenario: three
attributes fixed high, vary the fourth

• Only HMC remains usable
(∆ ≈ 10–40)

• MH better than DEM/SMC, but still
highly inaccurate

• DEM & SMC collapse (huge ∆,
often in the thousands)
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Guidelines derived from observations

If you expect strong correlation/curvature
Use gradient-informed samplers like HMC;
avoid isotropic MH.

If you expect multimodality
Consider tempered methods like SMC;
MH/HMC risk mode trapping.

If you expect high dimension
HMC scales better than MH. If also
heavy tails do not use SMC.

If you expect extreme stresses
Only HMC remains usable (though
accuracy degrades).
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Conclusion

• MC-FiT enables controlled, reproducible benchmarking across geometries.

• Distributional distances + iid baselines reveal failures missed by basic diagnostics.

• Clear empirical guidance emerges for sampler choice under geometry assumptions.
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Outlook

• Extend posterior families (e.g., skewness).

• Extend samplers in framework

• Integrate option to include own MCMC samples.
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Questions

Thank you!
Questions welcome.
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