
Model-Based PRA:
MCMC via Nimble

Mark J Brewer
Mark.Brewer@bioss.ac.uk

@markjbrewer.bsky.social

Director, Biomathematics and Statistics Scotland
http://www.bioss.ac.uk

Lübeck, 24–26 September 2025

1 / 52

Model-Based PRA:
MCMC via Nimble

Preamble: MCMC, sampling-based
inference

Simple example: rainfall, tree rings

Model-based PRA

Brief introduction to Nimble

Simple example: analysis

2 / 52

Sampling-Based Inference

Bayesian computation requires integration
— to obtain parameter estimates, posterior
distributions etc

Complex models — many parameters,
non-conjugate priors — analytical
integration not possible

Instead, can integrate using simulation —
so-called Monte Carlo methods

3 / 52

Monte Carlo Integration

Integral calculated by proportion of points
beneath curve in box. No use for complex
posterior distributions. . .

4 / 52

Markov Chain Monte Carlo

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

as dimension increases, proportions of
points “under the curve” tends to zero.

Trick: generate correlated points and update
using simpler conditional distributions.

This is MCMC — generating a “chain” of
points.

5 / 52

Markov Chain Monte Carlo

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

as dimension increases, proportions of
points “under the curve” tends to zero.

Trick: generate correlated points and update
using simpler conditional distributions.

This is MCMC — generating a “chain” of
points.

5 / 52

Markov Chain Monte Carlo

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

as dimension increases, proportions of
points “under the curve” tends to zero.

Trick: generate correlated points and update
using simpler conditional distributions.

This is MCMC — generating a “chain” of
points.

5 / 52

Markov Chain Monte Carlo

Can even update one parameter at a time.

Many different algorithms, examples include:
Gibbs Sampling (sampling from known “full”
conditionals)
Metropolis-Hastings (more general, doesn’t
require conjugacy)
Hamiltonian Monte Carlo, HMC (reduces
autocorrelation, used by Stan)

6 / 52

Markov Chain Monte Carlo

Can even update one parameter at a time.

Many different algorithms, examples include:
Gibbs Sampling (sampling from known “full”
conditionals)
Metropolis-Hastings (more general, doesn’t
require conjugacy)
Hamiltonian Monte Carlo, HMC (reduces
autocorrelation, used by Stan)

6 / 52

Markov Chain Monte Carlo

7 / 52

Markov Chain Monte Carlo

We obtain a sample of points for each
parameter:

these are random samples from the
posterior distribution.

Take means to get point estimates, use
percentiles to get interval estimates, etc.

Histograms or KDEs can illustrate the posterior
distribution.

8 / 52

Simple Example: Tree Rings
Data from Antonio Gazol,
now at the Instituto
Pirenaico de Ecologı́a in
Zaragoza, Spain
Tree ring data from P.
sylvestris (Scots Pine) in
Corbalán, Spain (Aragón)

9 / 52

Simple Example: Tree Rings
Data for 26 years (1987 to
2012)
Mean monthly rainfall
(mm)
Corresponding mean tree
ring width (mm)

10 / 52

Simple Example: Tree Rings

11 / 52

Simple Example: Tree Rings

12 / 52

Model-Based PRA

We can conduct PRA on models of our data

Typically, this may involve regression-type
models, with outcome/response variables
modelled as dependent on explanatory
variables

If we take a fully Bayesian approach, this
will account for uncertainty in the fitting of
the model

13 / 52

Model-Based PRA

This requires:
Finding a suitable model for the data

Assigning prior distributions/probabilities to
model parameters

Obtaining posterior distribution estimates,
typically via MCMC or similar computational
tools

14 / 52

Model-Based PRA

Assuming a simple linear regression model
for simplicity

Start by simulating values from the
covariate distribution; with data, could
assume normality or use a KDE etc

We obtain the same number of samples as
in the MCMC (so we have matched
covariates and sampled parameters)

15 / 52

Model-Based PRA
From these, we obtain new response data
— using the regression line for that sample
and the residual uncertainty

Happens for every value of the threshold,
and for hazard vs. non-hazard situations

This fully Bayesian approach includes the
uncertainty in the estimation of the model
parameters

Also accounts for correlation between
model parameters

16 / 52

Model-Based PRA

Relating back to the definitions of V and R

V = E[z |¬H]− E[z |H]

R = E[z |¬H]− E[z]

We are effectively using MCMC to estimate
the expectations above, accounting for
modelling uncertainty

17 / 52

NIMBLE

NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

Has three main components:

1 A “BUGS”-style language for describing
statistical models;

2 Algorithm library for NIMBLE models (MCMC,
HMC, seqMC, quadrature)

3 A language in R for programming, which
generates, compiles, and runs C++ code

18 / 52

NIMBLE

NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

Has three main components:
1 A “BUGS”-style language for describing

statistical models;

2 Algorithm library for NIMBLE models (MCMC,
HMC, seqMC, quadrature)

3 A language in R for programming, which
generates, compiles, and runs C++ code

18 / 52

NIMBLE

NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

Has three main components:
1 A “BUGS”-style language for describing

statistical models;
2 Algorithm library for NIMBLE models (MCMC,

HMC, seqMC, quadrature)

3 A language in R for programming, which
generates, compiles, and runs C++ code

18 / 52

NIMBLE

NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

Has three main components:
1 A “BUGS”-style language for describing

statistical models;
2 Algorithm library for NIMBLE models (MCMC,

HMC, seqMC, quadrature)
3 A language in R for programming, which

generates, compiles, and runs C++ code

18 / 52

NIMBLE

https://r-nimble.org

Extensive website, many examples and
training materials freely available

Several extension packages in R, e.g.:
nimbleSMC: for sequential Monte Carlo
(particle filtering)

nimbleEcology: occupancy models etc

nimbleSCR: for capture-recapture models

bayesNSGP: Bayesian analysis of
(non-stationary) Gaussian processes

19 / 52

NIMBLE

https://r-nimble.org

NIMBLE allows you to:
define your own distributions and functions for
use in model-definitions;

choose and customise your algorithms for
MCMC etc;

write your own MCMC algorithms;

do everything in R, without needing to know or
write C or C++;

20 / 52

NIMBLE

https://r-nimble.org

NIMBLE is not necessarily optimal for:
standard Gibbs Sampling (JAGS more
efficient?);

complex models which Stan can handle well;

very large models (tens of thousands of nodes)
— can take a long time to compile, although
subsequent run times should be OK.

Alternatives: JAGS, Stan, PyMC

21 / 52

https://mcmc-jags.sourceforge.io/
https://mc-stan.org/
https://pymcmc.readthedocs.io/en/latest/index.html

NIMBLE: Defining Models

Stochastic declarations:
x ∼ dgamma(shape,scale)

Deterministic declarations:
y <- 2 * x

Loops: (over observations)
for(i in 1:10) {

lambda[i] <- exp(mu[i])

y[i] ∼ dpois(lambda[i])

}

22 / 52

NIMBLE: Litters Example

Two groups of rat litters, N=16 litters in each
group, number of pups in each litter ni ,j

Survival ri ,j of pups in a litter governed by a
survival probability for each litter, pi ,j

Probabilities for litters within a group come
from common distribution
pi ,j ∼ Beta (ai , bi) for group i

23 / 52

NIMBLE: Model Code
littersCode <- nimbleCode({

for (i in 1:G) {
for (j in 1:N) {

likelihood (data model)

r[i,j] ∼ dbin(p[i,j], n[i,j])

latent process (random effects)

p[i,j] ∼ dbeta(a[i], b[i])

}
prior for hyperparameters

a[i] ∼ dgamma(1, 0.001)

b[i] ∼ dgamma(1, 0.001)

}
})

24 / 52

NIMBLE: Litters Example
Code on previous slide can also be stored
in a text file

Key with NIMBLE is flexibility — you can
rely on defaults or fine-tune modelling
(advanced)

Building the model has two stages: “define”
and then “compile”

Aside: calling nimbleModel is not always
necessary, but we gain flexibility by creating
a model object

25 / 52

NIMBLE: Build a Model
data and constants as R objects

G <- 2

N <- 16

n <- matrix(c(13, 12, 12, ...,10 ,7), nrow = 2)

r <- matrix(c(13, 12, 12, ..., 7, 0), nrow = 2)

littersConsts <- list(G = G, N = N, n = n)

littersData <- list(r = r)

littersInits <- list(a = c(2, 2), b=c(2, 2))

create the NIMBLE model object

littersModel <- nimbleModel(littersCode,

data = littersData, constants = littersConsts,

inits = littersInits)

26 / 52

NIMBLE: Build a Model

Compile model using
cLittersModel <-

compileNimble(littersModel)

Note, can inspect objects within the
compiled model object, for example

cLittersModel$p
cLittersModel$r
cLittersModel$calculate(’a’)

Final line gives the log-prior density (for a)

27 / 52

NIMBLE: Run MCMC
The steps for running MCMC in NIMBLE are:

1 Configure the MCMC (via
configureMCMC())

2 Build the MCMC (via buildMCMC())
3 Create a compiled version of the MCMC

(via compileNimble())
4 Run the MCMC (via runMCMC())
5 Assess and use the MCMC samples (study

traces; calculate means, densities etc)

28 / 52

NIMBLE: Run MCMC

Aside: Steps 1 to 4 on previous slide can
be combined, using nimbleMCMC() as a
short-cut

However, prefer to retain flexibility (to
modify samplers, repeat runs etc)

29 / 52

NIMBLE: Run MCMC

Firstly, configure the MCMC

This sets up the samplers to be used for
each node/parameter or group of
nodes/parameters

NIMBLE provides a default configuration for
ease of use

littersConf <-

configureMCMC(littersModel, print = TRUE)

30 / 52

NIMBLE: Run MCMC

Can also add to the list of
nodes/parameters to be monitored

This ensures we store the samples we want

By default, NIMBLE will store only the
“top-level” nodes, i.e., hyperparameters with
no stochastic parents

We need to make sure we add any derived
quantities to the list

littersConf$addMonitors(c(’a’, ’b’, ’p’))

31 / 52

NIMBLE: Run MCMC
Next, the MCMC algorithm must be “built”

After this, it should be compiled (into C++)
— this will enable much faster computation

Illustration below uses the project

argument; in general, projects can be
referenced using the name of the original
uncompiled model

littersMCMC <- buildMCMC(littersConf)

cLittersMCMC <-

compileNimble(littersMCMC, project =

littersModel)

32 / 52

NIMBLE: Run MCMC

At last, we can run the MCMC to generate
samples of nodes/parameters

Running the R version (prior to compilation)
can be very slow, so not recommended

Next two slides show running the R version
and the C++ version for comparison. . .

33 / 52

NIMBLE: Run MCMC

niter <- 1000

nburn <- 100

set.seed(1)

inits <- function() {
a <- runif(G, 1, 20)

b <- runif(G, 1, 20)

p <- rbind(rbeta(N, a[1], b[1]), rbeta(N,

a[2], b[2]))

return(list(a = a, b = b, p = p))

}

34 / 52

NIMBLE: Run MCMC

print(system.time(samples.slow <-

runMCMC(littersMCMC, niter = niter,

nburnin = nburn, inits = inits,

nchains = 3, samplesAsCodaMCMC = TRUE)))

print(system.time(samples <-

runMCMC(cLittersMCMC, niter = niter,

nburnin = nburn, inits = inits,

nchains = 3, samplesAsCodaMCMC = TRUE)))

35 / 52

NIMBLE: MCMC Traces for a1

Evidence of non-convergence; may be resolved
running longer chains or by blocking
(simultaneous updating of parameters)

36 / 52

NIMBLE: MCMC Traces for a1

Many more iterations! Not perfect, but better. . .

37 / 52

NIMBLE: Data vs Constants
Constants are values needed to define
model relationships

Index ranges, N in litters example

Vectors for indexing, e.g. mu[block[i]]

Given to nimbleModel

Data is a more general concept: observed
values of variables

Can be sampled, but not during MCMC

Given to nimbleModel or supplied later

NIMBLE will try to work out what should be
which. . .

38 / 52

NIMBLE: Data vs Constants

littersModel$isData(’r’)

littersModel$isData(’p’)

littersModel$r

littersModel$p

littersModel$simulate(’r’)

littersModel$simulate(’p’)

littersModel$simulate(’r’,
includeData = TRUE)

39 / 52

NIMBLE: Tree Rings PRA

40 / 52

NIMBLE: Tree Rings PRA

Model: linear regression

Will supply data length and covariate as
constants

Model1.Constants <- list(ndata=n,

x=Rainfall)

Data will be the response variable

Model1.Data <- list(z=Ring Width)

41 / 52

NIMBLE: Tree Rings PRA

Model1.Code <- nimbleCode({
lm.alpha ∼ dnorm (0, sd=100)

lm.beta ∼ dnorm (0, sd=100)

lm.tau ∼ dgamma(0.01, 0.01)

lm.sigma <- 1 / sqrt(lm.tau)

for(i in 1:ndata){
lm.mu[i] <- lm.alpha + lm.beta*x[i]

z[i] ∼ dnorm(lm.mu[i], sd=lm.sigma)

}
})

42 / 52

NIMBLE: Tree Rings PRA
Model1.Nimble <- nimbleModel(Model1.Code,

constants=Model1.Constants, data=Model1.Data)

Model1.Comp <- compileNimble(Model1.Nimble)

Model1.Conf <- configureMCMC(Model1.Comp)

Model1.Conf$addMonitors(c("lm.sigma"))

Model1.MCMC <- buildMCMC(Model1.Conf)

Model1.MCMC.Comp <- compileNimble(Model1.MCMC)

nsims <- 2000 ; nburnin <- 500

niter <- nsims+nburnin

set.seed(1)

Model1.samples <- runMCMC(Model1.MCMC.Comp,

nburnin=nburnin, niter=niter)

43 / 52

NIMBLE: Tree Rings PRA

For a single run you can take a shortcut and
compile/execute in one call:

Model1.samples.shortcut <- nimbleMCMC(

Model1.Comp, nburnin=nburnin, niter=niter,

monitors=c("lm.alpha.centred", "lm.beta",

"lm.tau", "lm.alpha", "lm.sigma")))

If you want to do repeat runs this will be
inefficient, as you will be compiling the C++
every time.

44 / 52

NIMBLE: Tree Rings PRA

You can also run the MCMC in R rather than in
C++ — but note it will be a lot slower!

Model1.samples.shortcut <- nimbleMCMC(

Model1.Comp, nburnin=nburnin, niter=niter,

monitors=c("lm.alpha.centred", "lm.beta",

"lm.tau", "lm.alpha", "lm.sigma")))

It can however be useful for diagnosing
problems in models, especially complex models
with user-defined distributions etc.

45 / 52

NIMBLE: Tree Rings PRA

0 500 1000 1500 2000

−
0.

4
−

0.
2

0.
0

0.
2

Index

lm
.a

lp
ha

0 500 1000 1500 2000

0.
00

5
0.

01
5

0.
02

5

Index

lm
.b

et
a

0 500 1000 1500 2000

0.
15

0.
20

0.
25

Index

lm
.s

ig
m

a

46 / 52

NIMBLE: Tree Rings PRA

Convergence here looks slow

Caused by high correlation between
regression intercept and slope

cor(Model1.samples[,

"lm.alpha"],Model1.samples[,

"lm.beta"])

A simple fix is to mean-centre the covariate

47 / 52

NIMBLE: Tree Rings PRA

Model1.Code <- nimbleCode({
lm.alpha.centred ∼ dnorm (0, sd=100)

lm.alpha <- lm.alpha.centred - lm.beta*xmean

lm.beta ∼ dnorm (0, sd=100)

lm.tau ∼ dgamma(0.01, 0.01)

lm.sigma <- 1 / sqrt(lm.tau)

xmean <- mean(x[1:ndata])

for(i in 1:ndata){
lm.mu[i] <- lm.alpha.centred +

lm.beta*(x[i]-xmean)

z[i] ∼ dnorm(lm.mu[i], sd=lm.sigma)

}
})

48 / 52

NIMBLE: Tree Rings PRA

0 500 1000 1500 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Index

lm
.a

lp
ha

0 500 1000 1500 2000

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Index

lm
.b

et
a

0 500 1000 1500 2000

0.
15

0.
20

0.
25

0.
30

Index

lm
.s

ig
m

a

49 / 52

NIMBLE: Tree Rings PRA

Convergence much better, reduced
correlation in sampling (faster moving)

cor(Model1.samples[,

"lm.alpha.centred"],Model1.samples[,

"lm.beta"])

Can also investigate samples — they are
samples from the marginal posterior
distributions

Calculate summary statistics, plot densities
etc

50 / 52

NIMBLE: Tree Rings PRA

End goal here is to plot the values of
vulnerability and risk by threshold

It is possible to include this in the MCMC,
but for simplicity we illustrate via a further
sampling stage

We use the full set of MCMC samples in
order to retain the full uncertainty

51 / 52

NIMBLE: Tree Rings PRA

20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Threshold

C
on

d
E

xp
ec

ta
tio

n
of

 Z

E[z|¬H]
E[z]
E[z|H]

20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

Threshold

V
R

52 / 52

