BioSS

Model-Based PRA:
MCMC via Nimble

Mark J Brewer

Mark.Brewer@bioss.ac.uk

Omarkjbrewer.bsky.social

Director, Biomathematics and Statistics Scotland
http://www.bioss.ac.uk

Libeck, 24—26 September 2025

1/52

Model-Based PRA: A
MCMC via Nimble

@ Preamble: MCMC, sampling-based
inference

@ Simple example: rainfall, tree rings
@ Model-based PRA
@ Brief introduction to Nimble

@ Simple example: analysis

2/52

Sampling-Based Inference o

@ Bayesian computation requires integration
— to obtain parameter estimates, posterior
distributions etc

@ Complex models — many parameters,
non-conjugate priors — analytical
integration not possible

@ Instead, can integrate using simulation —
so-called Monte Carlo methods

3/52

Monte Carlo Integration o

Integral calculated by proportion of points
beneath curve in box. No use for complex
posterior distributions. . .

4/52

Markov Chain Monte Carlo e

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

@ as dimension increases, proportions of
points “under the curve” tends to zero.

5/52

Markov Chain Monte Carlo e

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

@ as dimension increases, proportions of
points “under the curve” tends to zero.

Trick: generate correlated points and update
using simpler conditional distributions.

5/52

Markov Chain Monte Carlo e

Monte Carlo integration not suitable for many
dimensions, i.e. many parameters:

@ as dimension increases, proportions of
points “under the curve” tends to zero.

Trick: generate correlated points and update
using simpler conditional distributions.

This is MCMC — generating a “chain” of
points.

5/52

Markov Chain Monte Carlo e

Can even update one parameter at a time.

6/52

Markov Chain Monte Carlo e

Can even update one parameter at a time.

Many different algorithms, examples include:

@ Gibbs Sampling (sampling from known “full”
conditionals)

@ Metropolis-Hastings (more general, doesn’t
require conjugacy)

@ Hamiltonian Monte Carlo, HMC (reduces
autocorrelation, used by Stan)

6/52

Markov Chain Monte Carlo

7152

Markov Chain Monte Carlo e

We obtain a sample of points for each
parameter:

@ these are random samples from the
posterior distribution.

Take means to get point estimates, use
percentiles to get interval estimates, etc.

Histograms or KDEs can illustrate the posterior
distribution.

8/52

Simple Example: Tree Rings o

@ Data from Antonio Gazol,
now at the Instituto
Pirenaico de Ecologia in
Zaragoza, Spain

@ Tree ring data from P,
sylvestris (Scots Pine) in
Corbalan, Spain (Aragoén)

9/52

Simple Example: Tree Rings o
@ Data for 26 years (1987 to
2012)

@ Mean monthly rainfall
(mm)

@ Corresponding mean tree
ring width (mm)

10/52

Mean Tree Ring Width (mm)

Simple Example: Tree Rings

08

06

04

02

0.0

Mean Monthly Rainfall (mm)

40

45

Ape

BioSS

11/52

Mean Tree Ring Width (mm)

Simple Example: Tree Rings

08

06

04

02

0.0

Mean Monthly Rainfall (mm)

Ape

BioSS

12/52

Model-Based PRA M’

@ We can conduct PRA on models of our data

@ Typically, this may involve regression-type
models, with outcome/response variables
modelled as dependent on explanatory
variables

@ If we take a fully Bayesian approach, this
will account for uncertainty in the fitting of
the model

13/52

MOde|-BaSGd PRA BioSS

This requires:
@ Finding a suitable model for the data

@ Assigning prior distributions/probabilities to
model parameters

@ Obtaining posterior distribution estimates,
typically via MCMC or similar computational
tools

14/52

Model-Based PRA M’

@ Assuming a simple linear regression model
for simplicity

@ Start by simulating values from the
covariate distribution; with data, could
assume normality or use a KDE etc

@ We obtain the same number of samples as
in the MCMC (so we have matched
covariates and sampled parameters)

15/52

Model-Based PRA M’

@ From these, we obtain new response data
— using the regression line for that sample
and the residual uncertainty

@ Happens for every value of the threshold,
and for hazard vs. non-hazard situations

@ This fully Bayesian approach includes the
uncertainty in the estimation of the model
parameters

@ Also accounts for correlation between
model parameters

16/52

Model-Based PRA M’

@ Relating back to the definitions of V and R
@ V=E[z|-H] - E[z|H]
@ R=E[z|-H] - E[Z]

@ We are effectively using MCMC to estimate
the expectations above, accounting for
modelling uncertainty

17/52

NIMBLE e

NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

Has three main components:

18/52

NIMBLE e

@ NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

@ Has three main components:

@ A “BUGS-style language for describing
statistical models;

18/52

NIMBLE e

@ NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

@ Has three main components:

@ A “BUGS-style language for describing
statistical models;

@ Algorithm library for NIMBLE models (MCMC,
HMC, seqMC, quadrature)

18/52

NIMBLE e

@ NIMBLE: Numerical Inference of statistical
Models for Bayesian and Likelihood
Estimation

@ Has three main components:

@ A “BUGS-style language for describing
statistical models;

@ Algorithm library for NIMBLE models (MCMC,
HMC, seqMC, quadrature)

@ A language in R for programming, which
generates, compiles, and runs C++ code

18/52

NIMBLE e

https://r-nimble.org

@ Extensive website, many examples and
training materials freely available

@ Several extension packages in R, e.g.:

@ nimbleSMC: for sequential Monte Carlo
(particle filtering)

@ nimbleEcology: occupancy models etc
@ nimbleSCR: for capture-recapture models

@ bayesNSGP: Bayesian analysis of
(non-stationary) Gaussian processes

19/52

NIMBLE e

https://r-nimble.org

@ NIMBLE allows you to:

define your own distributions and functions for
use in model-definitions;

choose and customise your algorithms for
MCMC etc;

write your own MCMC algorithms;

do everything in R, without needing to know or
write C or C++;

20/52

NIMBLE e

https://r-nimble.org

@ NIMBLE is not necessarily optimal for:

@ standard Gibbs Sampling (JAGS more
efficient?);

@ complex models which Stan can handle well;

@ very large models (tens of thousands of nodes)
— can take a long time to compile, although
subsequent run times should be OK.

Alternatives: JAGS, Stan, PyMC

21/52

https://mcmc-jags.sourceforge.io/
https://mc-stan.org/
https://pymcmc.readthedocs.io/en/latest/index.html

NIMBLE: Defining Models ~ »

@ Stochastic declarations:
@ x ~ dgamma(shape,scale)
@ Deterministic declarations:
@ y <- 2 % x
@ Loops: (over observations)

@ for(i in 1:10) {
lambda[i] <- exp(mul[i])
y[i]l ~ dpois(lambdalil)

}

22/52

NIMBLE: Litters Example o

\ @ Mij
o

Group i Litter j

@ Two groups of rat litters, N=16 litters in each
group, number of pups in each litter n;;

@ Survival r;; of pups in a litter governed by a
survival probability for each litter, p; ;

@ Probabilities for litters within a group come
from common distribution

@ p;; ~ Beta(a, b;) for group i

23/52

NIMBLE: Model Code e

littersCode <- nimbleCode ({
for (i in 1:G) {

for (j in 1:N) {
likelihood (data model)
r(i,jl ~ dbin(pli,jl, nli,jl)
latent process (random effects)
pli,j] ~ dbeta(alil, bl[il)

}

prior for hyperparameters

ali] ~ dgamma(1l, 0.001)

b[i] ~ dgamma(1l, 0.001)

19,

24/52

NIMBLE: Litters Example o

@ Code on previous slide can also be stored
in a text file

@ Key with NIMBLE is flexibility — you can
rely on defaults or fine-tune modelling
(advanced)

@ Building the model has two stages: “define”
and then “compile”

@ Aside: calling nimbleModel is not always
necessary, but we gain flexibility by creating
a model object

25/52

NIMBLE: Build a Model e

data and constants as R objects

G <- 2
N <- 16
n <- matrix(c(13, 12, 12, ...,10 ,7), nrow = 2)
r <- matrix(c(13, 12, 12, ..., 7, 0), nrow = 2)

littersConsts <- 1list(G =G, N =N, n = n)
littersData <- list(r = r)
littersInits <- list(a = c(2, 2), b=c(2, 2))

create the NIMBLE model object

littersModel <- nimbleModel(littersCode,
data = littersData, constants = littersConsts,
inits = littersInits)

26/52

NIMBLE: Build a Model e

@ Compile model using

@ cLittersModel <-
compileNimble(littersModel)

@ Note, can inspect objects within the
compiled model object, for example

@ cLittersModel$p
@ clittersModel$r
@ cLittersModel$calculate(’a’)

@ Final line gives the log-prior density (for a)

27/52

NIMBLE: Run MCMC e

The steps for running MCMC in NIMBLE are:

@ Configure the MCMC (via
configureMCMC())

@ Build the MCMC (via buildMCMC())

@ Create a compiled version of the MCMC
(via compileNimble())

@ Run the MCMC (via runMCMC())
@ Assess and use the MCMC samples (study
traces; calculate means, densities etc)

28/52

NIMBLE: Run MCMC e

@ Aside: Steps 1 to 4 on previous slide can
be combined, using nimb1eMCMC() as a
short-cut

@ However, prefer to retain flexibility (to
modify samplers, repeat runs etc)

29/52

NIMBLE: Run MCMC e

@ Firstly, configure the MCMC

@ This sets up the samplers to be used for
each node/parameter or group of
nodes/parameters

@ NIMBLE provides a default configuration for
ease of use

littersConf <-
configureMCMC(littersModel, print = TRUE)

30/52

NIMBLE: Run MCMC e

@ Can also add to the list of
nodes/parameters to be monitored

@ This ensures we store the samples we want

@ By default, NIMBLE will store only the
“top-level” nodes, i.e., hyperparameters with
no stochastic parents

@ We need to make sure we add any derived
quantities to the list

littersConf$addMonitors(c(’a’, ’b’, ’p’))

31/52

NIMBLE: Run MCMC e

@ Next, the MCMC algorithm must be “built”

@ After this, it should be compiled (into C++)
— this will enable much faster computation

@ lllustration below uses the project
argument; in general, projects can be
referenced using the name of the original
uncompiled model

littersMCMC <- buildMCMC(littersConf)
cLittersMCMC <-
compileNimble(1littersMCMC, project =
littersModel)

32/52

NIMBLE: Run MCMC e

@ At last, we can run the MCMC to generate
samples of nodes/parameters

@ Running the R version (prior to compilation)
can be very slow, so not recommended

@ Next two slides show running the R version
and the C++ version for comparison. . .

33/52

NIMBLE: Run MCMC e

niter <- 1000
nburn <- 100

set.seed (1)

inits <- function() {

a <- runif(G, 1, 20)

b <- runif(G, 1, 20)

p <- rbind(rbeta(N, a[1], b[1]), rbeta(N,
al2], bl[2]))

return(list(a = a, b = b, p = p))
}

34/52

NIMBLE: Run MCMC e

print(system.time(samples.slow <-
runMCMC(1ittersMCMC, niter = niter,
nburnin = nburn, inits = inits,

nchains = 3, samplesAsCodaMCMC = TRUE)))

print (system.time(samples <-
runMCMC(cLittersMCMC, niter = niter,
nburnin = nburn, inits = inits,

nchains = 3, samplesAsCodaMCMC = TRUE)))

35/52

a[1]

200

400

300

100

NIMBLE: MCMC Traces for a;

Ape

BioSS

o
=3
<}
=)
©
3
3
=}
% =
=)
<}
=)
o
A, 3
o IO TAT s
") A st ey
e s
4 <}
T T T T T < T T T
0 200 400 600 800 0 100 200 300 400
lterations N=900 Bandwidth=16.2

Evidence of non-convergence; may be resolved
running longer chains or by blocking
(simultaneous updating of parameters)

36/52

o]

4000

8000

6000

2000

0

N ,H lh ‘ln\ 1]/”

NIMBLE: MCMC Traces for a;

"ﬂVV

BioSS

e-04

04

e-04

[1]

3
1 I I : o
\”Il i un H !‘ L |
I \
i \ U\l
| o
=
T T T T T 3 T T T T T
0e+00 2e+05 4e+05 Be+05 8e+05 0 2000 4000 6000 8000
lterations N=900000 Bandwidth=67.98

Many more iterations! Not perfect, but better. ..

37/52

NIMBLE: Data vs Constants e

@ Constants are values needed to define
model relationships
@ Index ranges, N in litters example
@ Vectors for indexing, e.g. mu[block[i]]
@ Given to nimbleModel

@ Data is a more general concept: observed
values of variables
@ Can be sampled, but not during MCMC
@ Given to nimbleModel or supplied later

NIMBLE will try to work out what should be
which. . .

38/52

NIMBLE: Data vs Constants e

littersModel$isData(’r’)
littersModel$isData(’p’)
littersModel$r
littersModel$p
littersModel$simulate(’r’)
littersModel$simulate(’p’)

littersModel$simulate(’r’,
includeData = TRUE)

39/52

Mean Tree Ring Width (mm)

08

06

04

02

0.0

NIMBLE: Tree Rings PRA .

20

25

30 35

Mean Monthly Rainfall (mm)

40

45

40/52

NIMBLE: Tree Rings PRA .

@ Model: linear regression

@ Will supply data length and covariate as
constants

@ Modell.Constants <- list(ndata=n,
x=Rainfall)

@ Data will be the response variable
@ Modell.Data <- list(z=Ring Width)

41/52

NIMBLE: Tree Rings PRA .

Modell.Code <- nimbleCode ({

lm.alpha ~ dnorm (O, sd=100)

lm.beta ~ dnorm (0, sd=100)

Ilm.tau ~ dgamma(0.01, 0.01)

lm.sigma <- 1 / sqrt(lm.tau)

for(i in 1:ndata){
Im.mu[i] <- 1m.alpha + 1lm.beta*x[i]
z[i] ~ dnorm(lm.mu[i], sd=1lm.sigma)

}
1)

42/52

NIMBLE: Tree Rings PRA .

Modell.Nimble <- nimbleModel(Modell.Code,
constants=Modell.Constants, data=Modell.Data)
Modell.Comp <- compileNimble(Modell.Nimble)

Modell.Conf <- configureMCMC(Modell.Comp)
Modell.Conf$addMonitors(c("lm.sigma"))
Modell.MCMC <- buildMCMC(Modell.Conf)

Modell .MCMC.Comp <- compileNimble(Modell.MCMC)

nsims <- 2000 ; nburnin <- 500

niter <- nsims+nburnin

set.seed (1)

Modell.samples <- runMCMC(Modell.MCMC.Comp,
nburnin=nburnin, niter=niter)

43/52

NIMBLE: Tree Rings PRA .

For a single run you can take a shortcut and
compile/execute in one call:

Modell.samples.shortcut <- nimbleMCMC(
Modell.Comp, nburnin=nburnin, niter=niter,
monitors=c("1lm.alpha.centred", "lm.beta",
"lm.tau", "lm.alpha", "lm.sigma")))

If you want to do repeat runs this will be

inefficient, as you will be compiling the C++
every time.

44/52

NIMBLE: Tree Rings PRA .

You can also run the MCMC in R rather than in
C++ — but note it will be a /ot slower!

Modell.samples.shortcut <- nimbleMCMC(
Modell.Comp, nburnin=nburnin, niter=niter,
monitors=c("lm.alpha.centred", "lm.beta",
"lm.tau", "lm.alpha", "lm.sigma")))

It can however be useful for diagnosing

problems in models, especially complex models
with user-defined distributions etc.

45/52

Im.alpha

Im.beta

sigma

NIMBLE: Tree Rings PRA

BioSS

500

1000

1500

2000

1000

2000

46/52

NIMBLE: Tree Rings PRA .

@ Convergence here looks slow

@ Caused by high correlation between
regression intercept and slope

@ cor(Modell.samples|[,
"lm.alpha"] ,Modell.samples[,
"Ilm.beta"])

@ A simple fix is to mean-centre the covariate

47152

NIMBLE: Tree Rings PRA .

Modell.Code <- nimbleCode ({
1lm.alpha.centred ~ dnorm (O, sd=100)
Im.alpha <- 1lm.alpha.centred - 1lm.beta*xmean
lm.beta ~ dnorm (O, sd=100)

Ilm.tau ~ dgamma(0.01, 0.01)
lm.sigma <- 1 / sqrt(1lm.tau)
xmean <- mean(x[1l:ndata])
for(i in 1:ndata){
Im.mul[i] <- 1m.alpha.centred +
1m.betax(x[i] —xmean)
z[i] ~ dnorm(1lm.mu[i], sd=1m.sigma)
}

})

48/52

Im.alpha

Im.beta

Im.sigma

-06 -04 -02 00

0020 0030

0010

020 025 0.300.000
L L

0.15

NIMBLE: Tree Rings PRA

Ape

BioSS

500

1000

1500

2000

500

1000

1500

2000

49/52

NIMBLE: Tree Rings PRA .

@ Convergence much better, reduced
correlation in sampling (faster moving)

@ cor(Modell.samples|[,
"lm.alpha.centred"] ,Modell.samples[,
"lm.beta"])

@ Can also investigate samples — they are
samples from the marginal posterior
distributions

@ Calculate summary statistics, plot densities
etc

50/52

NIMBLE: Tree Rings PRA .

@ End goal here is to plot the values of
vulnerability and risk by threshold

@ It is possible to include this in the MCMC,
but for simplicity we illustrate via a further
sampling stage

@ We use the full set of MCMC samples in
order to retain the full uncertainty

51/52

Cond Expectation of Z

1.2

1.0

0.2 0.4 0.6 0.8

0.0

NIMBLE: Tree Rings PRA .

— Elzl-H)
Elz]
— ElzH)
T T T T T T
20 25 30 35 40 45
Threshold

0.6

0.4

0.2

0.0

T T T T T
20 25 30 35 40 45

Threshold

52/52

