

Model-Based PRA: MCMC via Nimble

Mark J Brewer

Mark.Brewer@bioss.ac.uk @markjbrewer.bsky.social

Director, Biomathematics and Statistics Scotland http://www.bioss.ac.uk

Lübeck, 24–26 September 2025

Model-Based PRA: MCMC via Nimble

- Preamble: MCMC, sampling-based inference
- Simple example: rainfall, tree rings
- Model-based PRA
- Brief introduction to Nimble
- Simple example: analysis

Sampling-Based Inference

- Bayesian computation requires integration

 to obtain parameter estimates, posterior distributions etc
- Complex models many parameters, non-conjugate priors — analytical integration not possible
- Instead, can integrate using simulation so-called Monte Carlo methods

Monte Carlo Integration

Integral calculated by proportion of points beneath curve in box. *No use for complex posterior distributions. . .*

Monte Carlo integration not suitable for many dimensions, i.e. many parameters:

 as dimension increases, proportions of points "under the curve" tends to zero.

Monte Carlo integration not suitable for many dimensions, i.e. many parameters:

 as dimension increases, proportions of points "under the curve" tends to zero.

Trick: generate **correlated** points and update using simpler conditional distributions.

Monte Carlo integration not suitable for many dimensions, i.e. many parameters:

 as dimension increases, proportions of points "under the curve" tends to zero.

Trick: generate **correlated** points and update using simpler conditional distributions.

This is MCMC — generating a "chain" of points.

Can even update one parameter at a time.

Can even update one parameter at a time.

Many different algorithms, examples include:

- Gibbs Sampling (sampling from known "full" conditionals)
- Metropolis-Hastings (more general, doesn't require conjugacy)
- Hamiltonian Monte Carlo, HMC (reduces autocorrelation, used by Stan)

We obtain a *sample of points* for each parameter:

 these are random samples from the posterior distribution.

Take means to get point estimates, use percentiles to get interval estimates, etc.

Histograms or KDEs can illustrate the posterior distribution.

- Data from Antonio Gazol, now at the Instituto
 Pirenaico de Ecología in Zaragoza, Spain
- Tree ring data from P. sylvestris (Scots Pine) in Corbalán, Spain (Aragón)

- Data for 26 years (1987 to 2012)
- Mean monthly rainfall (mm)
- Corresponding mean tree ring width (mm)

- We can conduct PRA on models of our data
- Typically, this may involve regression-type models, with outcome/response variables modelled as dependent on explanatory variables
- If we take a fully Bayesian approach, this will account for uncertainty in the fitting of the model

This requires:

- Finding a suitable model for the data
- Assigning prior distributions/probabilities to model parameters
- Obtaining posterior distribution estimates, typically via MCMC or similar computational tools

- Assuming a simple linear regression model for simplicity
- Start by simulating values from the covariate distribution; with data, could assume normality or use a KDE etc
- We obtain the same number of samples as in the MCMC (so we have matched covariates and sampled parameters)

- From these, we obtain new response data
 — using the regression line for that sample and the residual uncertainty
- Happens for every value of the threshold, and for hazard vs. non-hazard situations
- This fully Bayesian approach includes the uncertainty in the estimation of the model parameters
- Also accounts for correlation between model parameters

- Relating back to the definitions of V and R
- $V = E[z | \neg H] E[z | H]$
- $R = E[z | \neg H] E[z]$
- We are effectively using MCMC to estimate the expectations above, accounting for modelling uncertainty

- NIMBLE: Numerical Inference of statistical Models for Bayesian and Likelihood Estimation
- Has three main components:

- NIMBLE: Numerical Inference of statistical Models for Bayesian and Likelihood Estimation
- Has three main components:
 - A "BUGS"-style language for describing statistical models;

- NIMBLE: Numerical Inference of statistical Models for Bayesian and Likelihood Estimation
- Has three main components:
 - A "BUGS"-style language for describing statistical models;
 - Algorithm library for NIMBLE models (MCMC, HMC, seqMC, quadrature)

- NIMBLE: Numerical Inference of statistical Models for Bayesian and Likelihood Estimation
- Has three main components:
 - A "BUGS"-style language for describing statistical models;
 - Algorithm library for NIMBLE models (MCMC, HMC, seqMC, quadrature)
 - A language in R for programming, which generates, compiles, and runs C++ code

https://r-nimble.org

- Extensive website, many examples and training materials freely available
- Several extension packages in R, e.g.:
 - nimbleSMC: for sequential Monte Carlo (particle filtering)
 - nimbleEcology: occupancy models etc
 - nimbleSCR: for capture-recapture models
 - bayesNSGP: Bayesian analysis of (non-stationary) Gaussian processes

https://r-nimble.org

- NIMBLE allows you to:
 - define your own distributions and functions for use in model-definitions;
 - choose and customise your algorithms for MCMC etc;
 - write your own MCMC algorithms;
 - do everything in R, without needing to know or write C or C++;

https://r-nimble.org

- NIMBLE is not necessarily optimal for:
 - standard Gibbs Sampling (JAGS more efficient?);
 - complex models which Stan can handle well;
 - very large models (tens of thousands of nodes)
 can take a long time to compile, although subsequent run times should be OK.

Alternatives: JAGS, Stan, PyMC

NIMBLE: Defining Models

- Stochastic declarations:
 - $x \sim dgamma(shape, scale)$
- Deterministic declarations:
 - y <- 2 * x
- Loops: (over observations)
 - for(i in 1:10) {
 lambda[i] <- exp(mu[i])
 y[i] ~ dpois(lambda[i])
 }</pre>

NIMBLE: Litters Example

- Two groups of rat litters, N=16 litters in each group, number of pups in each litter $n_{i,i}$
- Survival $r_{i,j}$ of pups in a litter governed by a survival probability for each litter, $p_{i,j}$
- Probabilities for litters within a group come from common distribution
- $p_{i,j} \sim \text{Beta}(a_i, b_i)$ for group i

NIMBLE: Model Code


```
littersCode <- nimbleCode({</pre>
   for (i in 1:G) {
      for (j in 1:N) {
         # likelihood (data model)
         r[i,j] \sim dbin(p[i,j], n[i,j])
         # latent process (random effects)
         p[i,j] \sim dbeta(a[i], b[i])
      # prior for hyperparameters
      a[i] \sim dgamma(1, 0.001)
      b[i] \sim dgamma(1, 0.001)
```

NIMBLE: Litters Example

- Code on previous slide can also be stored in a text file
- Key with NIMBLE is flexibility you can rely on defaults or fine-tune modelling (advanced)
- Building the model has two stages: "define" and then "compile"
- Aside: calling nimbleModel is not always necessary, but we gain flexibility by creating a model object

NIMBLE: Build a Model


```
## data and constants as R objects
G < -2
N < -16
n \leftarrow matrix(c(13, 12, 12, ..., 10, 7), nrow = 2)
r \leftarrow matrix(c(13, 12, 12, ..., 7, 0), nrow = 2)
littersConsts \leftarrow list(G = G, N = N, n = n)
littersData <- list(r = r)</pre>
littersInits <- list( a = c(2, 2), b=c(2, 2))
## create the NIMBLE model object
littersModel <- nimbleModel(littersCode,</pre>
   data = littersData, constants = littersConsts,
   inits = littersInits)
```

NIMBLE: Build a Model

- Compile model using
 - cLittersModel <compileNimble(littersModel)
- Note, can inspect objects within the compiled model object, for example
 - cLittersModel\$p
 - cLittersModel\$r
 - cLittersModel\$calculate('a')
- Final line gives the log-prior density (for a)

NIMBLE: Run MCMC

The steps for running MCMC in NIMBLE are:

- Configure the MCMC (via configureMCMC())
- Build the MCMC (via buildMCMC())
- Oreate a compiled version of the MCMC (via compileNimble())
- Run the MCMC (via runMCMC())
- Assess and use the MCMC samples (study traces; calculate means, densities etc)

NIMBLE: Run MCMC

- Aside: Steps 1 to 4 on previous slide can be combined, using nimbleMCMC() as a short-cut
- However, prefer to retain flexibility (to modify samplers, repeat runs etc)

NIMBLE: Run MCMC

- Firstly, configure the MCMC
- This sets up the samplers to be used for each node/parameter or group of nodes/parameters
- NIMBLE provides a default configuration for ease of use

```
littersConf <-
configureMCMC(littersModel, print = TRUE)</pre>
```


- Can also add to the list of nodes/parameters to be monitored
- This ensures we store the samples we want
- By default, NIMBLE will store only the "top-level" nodes, i.e., hyperparameters with no stochastic parents
- We need to make sure we add any derived quantities to the list

littersConf\$addMonitors(c('a', 'b', 'p'))

- Next, the MCMC algorithm must be "built"
- After this, it should be compiled (into C++)
 this will enable *much* faster computation
- Illustration below uses the project argument; in general, projects can be referenced using the name of the original uncompiled model

```
littersMCMC <- buildMCMC(littersConf)
cLittersMCMC <-
compileNimble(littersMCMC, project =
littersModel)</pre>
```


- At last, we can run the MCMC to generate samples of nodes/parameters
- Running the R version (prior to compilation) can be very slow, so not recommended
- Next two slides show running the R version and the C++ version for comparison...


```
niter <- 1000
nburn <- 100
set.seed(1)
inits <- function() {</pre>
   a <- runif(G, 1, 20)
   b <- runif(G, 1, 20)
   p <- rbind(rbeta(N, a[1], b[1]), rbeta(N,</pre>
a[2], b[2]))
   return(list(a = a, b = b, p = p))
```



```
print(system.time(samples.slow <-
runMCMC(littersMCMC, niter = niter,
nburnin = nburn, inits = inits,
nchains = 3, samplesAsCodaMCMC = TRUE)))

print(system.time(samples <-
runMCMC(cLittersMCMC, niter = niter,
nburnin = nburn, inits = inits,
nchains = 3, samplesAsCodaMCMC = TRUE)))</pre>
```

NIMBLE: MCMC Traces for a₁

Evidence of non-convergence; may be resolved running longer chains or by blocking (simultaneous updating of parameters)

NIMBLE: MCMC Traces for a₁

Many more iterations! Not perfect, but better...

NIMBLE: Data vs Constants

- Constants are values needed to define model relationships
 - Index ranges, N in litters example
 - Vectors for indexing, e.g. mu[block[i]]
 - Given to nimbleModel
- Data is a more general concept: observed values of variables
 - Can be sampled, but not during MCMC
 - Given to nimbleModel or supplied later

NIMBLE will try to work out what should be which...

NIMBLE: Data vs Constants

- littersModel\$isData('r')
- littersModel\$isData('p')
- littersModel\$r
- littersModel\$p
- littersModel\$simulate('r')
- littersModel\$simulate('p')
- littersModel\$simulate('r',
 includeData = TRUE)

- Model: linear regression
- Will supply data length and covariate as constants
- Model1.Constants <- list(ndata=n, x=Rainfall)
- Data will be the response variable
- Model1.Data <- list(z=Ring_Width)</pre>


```
Model1.Code <- nimbleCode({</pre>
   lm.alpha \sim dnorm ( 0, sd=100 )
   lm.beta \sim dnorm (0, sd=100)
   lm.tau \sim dgamma(0.01, 0.01)
   lm.sigma <- 1 / sqrt(lm.tau)</pre>
   for(i in 1:ndata){
      lm.mu[i] <- lm.alpha + lm.beta*x[i]</pre>
      z[i] \sim dnorm(lm.mu[i], sd=lm.sigma)
```



```
Model1.Nimble <- nimbleModel( Model1.Code,
constants=Model1.Constants, data=Model1.Data )
Model1.Comp <- compileNimble( Model1.Nimble )</pre>
Model1.Conf <- configureMCMC( Model1.Comp )</pre>
Model1.Conf$addMonitors( c("lm.sigma") )
Model1.MCMC <- buildMCMC( Model1.Conf )</pre>
Model1.MCMC.Comp <- compileNimble( Model1.MCMC )</pre>
nsims <- 2000 ; nburnin <- 500
niter <- nsims+nburnin
set.seed(1)
Model1.samples <- runMCMC( Model1.MCMC.Comp,</pre>
nburnin=nburnin, niter=niter)
```


For a single run you can take a shortcut and compile/execute in one call:

```
Model1.samples.shortcut <- nimbleMCMC(
Model1.Comp, nburnin=nburnin, niter=niter,
monitors=c("lm.alpha.centred", "lm.beta",
"lm.tau", "lm.alpha", "lm.sigma") ))</pre>
```

If you want to do repeat runs this will be inefficient, as you will be compiling the C++ every time.

You can also run the MCMC in R rather than in C++ — but note it will be a *lot* slower!

```
Model1.samples.shortcut <- nimbleMCMC(
Model1.Comp, nburnin=nburnin, niter=niter,
monitors=c("lm.alpha.centred", "lm.beta",
"lm.tau", "lm.alpha", "lm.sigma") ))</pre>
```

It can however be useful for diagnosing problems in models, especially complex models with user-defined distributions etc.

- Convergence here looks slow
- Caused by high correlation between regression intercept and slope
- ocor(Model1.samples[,
 "lm.alpha"],Model1.samples[,
 "lm.beta"])
- A simple fix is to mean-centre the covariate


```
Model1.Code <- nimbleCode({</pre>
   lm.alpha.centred \sim dnorm (0, sd=100)
   lm.alpha <- lm.alpha.centred - lm.beta*xmean</pre>
   lm.beta \sim dnorm (0, sd=100)
   lm.tau \sim dgamma(0.01, 0.01)
   lm.sigma <- 1 / sqrt(lm.tau)</pre>
   xmean <- mean( x[1:ndata] )</pre>
   for(i in 1:ndata){
      lm.mu[i] <- lm.alpha.centred +</pre>
lm.beta*(x[i]-xmean)
      z[i] \sim dnorm(lm.mu[i], sd=lm.sigma)
```


- Convergence much better, reduced correlation in sampling (faster moving)
- ocor(Model1.samples[,
 "lm.alpha.centred"], Model1.samples[,
 "lm.beta"])
- Can also investigate samples they are samples from the marginal posterior distributions
- Calculate summary statistics, plot densities etc

- End goal here is to plot the values of vulnerability and risk by threshold
- It is possible to include this in the MCMC, but for simplicity we illustrate via a further sampling stage
- We use the full set of MCMC samples in order to retain the full uncertainty

