The harmonic mean χ^2 test to substantiate scientific findings

Leonhard Held

University of Zurich^{UZH}

GMDS-CEN Conference 2020

Satellite Webinar "Long-run behaviour of Bayesian procedures" September 16, 2020

Introduction

The Harmonic Mean χ^2 Test

Discussion

Introduction

- Replicability of research findings is crucial to the credibility of science.
- Large-scale replication projects have been conducted in the last years.
- Such efforts help to assess to what extent results from original studies can be confirmed in independent replication studies.

Replication is Standard in Drug Regulation

- FDA/EMA requires

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness."

- Usually implemented requiring one-sided $p \le \alpha = 0.025$ in two independent studies ("two-trials rule").
- However, this may not reflect the available evidence:
 - $-p_1 = p_2 = 0.024$ leads to claim of success.
 - $-p_1 = 0.026$ and $p_2 = 0.001$ leads to no claim of success.

The harmonic mean χ^2 test leads to more appropriate inferences.

Combining and Pooling *P***-Values**

- It is not clear how to extend the rule to results from n > 2 studies:
 - Requiring at least 2 out of *n* studies to be significant is too lax.
 - Requiring all *n* studies to be significant is too stringent.
- Fisher's combined or Stouffer's pooled method is sometimes used, but not without problems:
 - $-p_1 = 0.0001$ and $p_2 = 0.5$ gives Fisher's $p = 0.0005 < 0.025^2$.
 - $-p_1 = 0.01$ and $p_2 = 0.01$ gives Fisher's $p = 0.001 > 0.025^2$.

The harmonic mean χ^2 test leads to more appropriate inferences.

Analysis of Replication Studies

Effect estimates with 95% confidence interval

Analysis and Design of Replication Studies

J. R. Statist. Soc. A (2020)

A new standard for the analysis and design of replication studies

Leonhard Held

University of Zurich, Switzerland

[Read before The Royal Statistical Society at a meeting on 'Signs and sizes: understanding and replicating statistical findings' at the Society's 2019 annual conference in Beflast on Wednesday, September 4th, 2019, the President, Professor D. Ashby, in the Chair]

https://doi.org/10.1111/rssa.12493

Reverse-Bayes Analysis

A New Standard for the Analysis and Design of Replication Studies

A combination of

- Analysis of Credibility (Matthews, 2001, 2018)
- Assessment of Prior-Data Conflict (Box, 1980)

leads to

- A new definition of replication success
- The degree of replication success quantified by the sceptical p-value p_S
- If the two studies are equally sized and $sign(\hat{\theta}_o) = sign(\hat{\theta}_r)$ then

$$p_{S} = 1 - \Phi(z_{S})$$
 where $z_{S}^{2} = \frac{1}{1/z_{o}^{2} + 1/z_{r}^{2}}$

Introduction

The Harmonic Mean χ^2 Test

Discussion

Publication

Appl. Statist. (2020)

The harmonic mean $\chi^{\rm 2}\text{-test}$ to substantiate scientific findings

Leonhard Held University of Zurich, Switzerland

https://doi.org/10.1111/rssc.12410

The Harmonic Mean χ^2 **Test** n = 2 studies

- Transform two (one-sided) *p*-values p_1, p_2 to *z*-values $z_i = \Phi^{-1}(1 p_i)$.
- Compute

$$X^2 = \frac{4}{1/z_1^2 + 1/z_2^2}$$

- The null distribution of X^2 is $\chi^2(1)$.
- A one-sided *p*-value can be calculated.
- Exact Type-I error rate control can be achieved.

Comparison With the Two-Trials Rule

Type-I error rate control at 0.025²

Project Power

- Of central interest is the overall power for the project (project power).
- Project power can easily be calculated through Monte Carlo simulation.

Project Power

	Project power (%)			
Trial power	two-trials rule	harmonic	combined	pooled
80	64	71	74	77
90	81	87	90	91

The General Harmonic Mean χ^2 Test

- The approach can be generalized

to *n* studies: and can include weights w_i :

$$X^{2} = \frac{n^{2}}{\sum_{i=1}^{n} 1/z_{i}^{2}} \qquad \qquad X^{2}_{w} = \frac{w^{2}}{\sum_{i=1}^{n} w_{i}/z_{i}^{2}} \text{ where } w = \sum_{i=1}^{n} \sqrt{w_{i}}$$

- The null distribution of X^2 resp. X_w^2 is still $\chi^2(1)$.
- A one-sided *p*-value can be calculated.

Bounds on *p***-Values**

Bounds for *p*-values from *n* studies at level 0.025²

bound	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
necessary	0.065	0.17	0.26	0.32	0.37
sufficient	0.016	0.053	0.099	0.15	0.20

Formalizing the meaning of

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness"

Bounds on *p***-Values**

Bounds for *p*-values from *n* studies at level 0.025²

bound	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4	<i>n</i> = 5	<i>n</i> = 6
necessary	0.065	0.17	0.26	0.32	0.37
sufficient	0.016	0.053	0.099	0.15	0.20

Formalizing the meaning of

"at least two adequate and well-controlled studies, each convincing on its own, to establish effectiveness"

Application

Results from 5 clinical trials on the effect of Carvedilol on mortality for the treatment of patients with moderate to severe heart failure (from Fisher, 1999):

study number	<i>p</i> -value	hazard ratio	standard error
220	0.00025	0.27	0.41
240	0.0245	0.22	0.85
223	0.128	0.72	0.29
221	0.1305	0.57	0.51
239	0.2575	0.53	1.02

combined	$p = 0.00013 < 0.025^2$
pooled	$p = 0.00009 < 0.025^2$
harmonic	$p = 0.00048 < 0.025^2$
weighted harmonic	$p = 0.00034 < 0.025^2$

Application Modified data: Double the *p*-value of study 223

study number	<i>p</i> -value	hazard ratio	standard error
220	0.00025	0.27	0.41
240	0.0245	0.22	0.85
223	0.256	0.83	0.29
221	0.1305	0.57	0.51
239	0.2575	0.53	1.02

combined	$p = 0.00021 < 0.025^2$
pooled	$p = 0.00022 < 0.025^2$
harmonic	$p = 0.0012 > 0.025^2$
weighted harmonic	$p = 0.0027 > 0.025^2$

Confidence intervals

The harmonic χ^2 test can be inverted to obtain a confidence interval:

- Consider test statistic $Z_i = (\hat{\theta}_i \mu) / \sigma_i$ for general $H_0: \theta = \mu$.
- Consider two-sided *p*-values to represent the common scenario that an initial study is two-sided and all following studies are one-sided.
- Derive confidence interval from *p*-value function.

study number	<i>p</i> -value	hazard ratio	standard error
220	0.00025	0.27	0.41
240	0.0245	0.22	0.85
223	0.128	0.72	0.29
221	0.1305	0.57	0.51
239	0.2575	0.53	1.02

 \rightarrow 95% confidence interval for hazard ratio: 0.21 to 0.73.

Discussion

"p-values are just too familiar and useful to ditch" David Spiegelhalter (2017)

The harmonic mean χ^2 test

- leads to more appropriate inferences than the two-trials rule
- has more project power than the two-trials rule
- provides a principled extension to analyse results from more than two trials
- allows for weights
- implies restrictions on study-specific *p*-values, requesting each trial to be convincing on its own
- Software available in R-package ReplicationSuccess On R-Forge

Backup: Conditional Power

Power to detect the observed effect from the first study with an identical second study

One-sided p-value of first study