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Introduction

• Bayesian trials can take advantage of prior information

• Desire to avoid domination of the prior information on posterior
inference

• Assessment and communication of the impact of a prior crucial

• 2 aspects of impact of a prior:
• Strength of information (dispersion)
• Commensurability with current data (prior-data conflict)

• Equating the information contained in the prior to a certain sample
size gives rise to the prior effective sample size (ESS)
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Prior Effective Sample Size: Samples from what?

ESS quantified in terms of ...
• ... historical samples / EHSS:

Prior considered as posterior given historical data under a baseline
prior.

ESS quantifies number of samples in this historical data set.

• ... current samples / ECSS:
Prior information equated to samples from the current data model.
ESS quantifies number of current samples to be added or subtracted

to the likelihood in order to obtain a posterior inference equivalent to
that of a baseline prior model (e.g. in terms of MSE).
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Prior Effective Sample Size: Samples from what?

Picture a paediatric trial where prior comes from preceding adult trial:

• EHSS: How many (hypothetical) patients with adult characteristics
are added to the data set of children?

• ECSS: How many (hypothetical) patients with child characteristics
are added to the data set of children?

→ Introduce ECSS and its possible merits
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Prior informativeness versus prior impact

EHSS quantifies the amount of prior information,
ECSS intends to additionally quantify its impact on posterior.

Example: Data y ∼ N(1, 32), n=100

Baseline prior N(0, 102)
Prior N(1, 0.75), prior mean=data mean
Prior N(3.5, 0.75), prior mean6=data mean

data mean
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ESS as samples from historical data model: EHSS
• Known results for exponential families with conjugate priors,

e.g. EHSS = σ2
y/σ

2
π in y ∼ N(µ, σ2

y ), µ ∼ N(µπ, σ
2
π)

• Example: EHSS=16 for both priors
• Generalization by Morita, Thall & Müller (2008)

Prior of interest
π(θ|θπ, σ2

π)
Vague prior (large variance)

πb(θ|θπ, σ2
πb
)

Likelihood: fm(y1:m|θ)
Sampling prior:
π(θ|θπ, σ2

π)

Posterior
πb(θ|y1:m)

Find m which minimizes
distance in curvature
(data-independent)

Prior of interest
π(θ|θπ, σ2

π)
Objective/reference prior

πb(θ|θπb , σ2
πb
)

Posterior
π(θ|y1:(k−m))

Posterior
πb(θ|y1:k)

Find m which minimizes
distance in MSE

Likelihood:
fk−m(y1:(k−m)|θ0)

Likelihood:
fk(y1:k|θ0)

In practice: replace θ0 by the poserior mean under πb
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ESS as samples from current data model: ECSS
Prior of interest
π(θ|θπ, σ2

π)
Vague prior (large variance)

πb(θ|θπ, σ2
πb
)

Likelihood: fm(y1:m|θ)
Sampling prior:
π(θ|θπ, σ2

π)

Posterior
πb(θ|y1:m)

Find m which minimizes
distance in curvature
(data-independent)

Prior of interest
π(θ|θπ, σ2

π)
Objective/reference prior

πb(θ|θπb , σ2
πb
)

Posterior
π(θ|y1:(k−m))

Posterior
πb(θ|y1:k)

Find m which minimizes
distance in MSE

Likelihood:
fk−m(y1:(k−m)|θ0)

Likelihood:
fk(y1:k|θ0)

In practice: replace θ0 by the poserior mean under πb
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ECSS=−71

ECSS=36

100

• Builds on Reimherr, Meng & Nicolae (2014)
• Negative in case of prior-data conflict
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When is ECSS of potential interest?

The EHSS is valuable for prior elicitation when no information about the
future trial is yet available.

However,
1 EHSS describes amount of information but not impact of a prior

2 In some situations no consensus on how to compute EHSS and a
data-dependent measure is desirable→ e.g. mixture priors

3 In some situations we are rather interested in the current rather than
historical prior sample size→ e.g. adaptive trial
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Robust mixture priors
Robust mixture prior: π(µ) = (1− ρ)πinformative(µ) + ρπbaseline(µ)

• Mixture of informative and baseline prior
Heavy-tailed⇒ information discarded for clear prior-data conflict

• No consensus on how to compute EHSS for mixture priors
• Proposals for data-independent EHSS:

• Apply Morita et al’s algorithm to prior (1), approximate mixture (2) or take
weighted average of EHSSs of mixture components (3)

• May give different results,
(1) and (2) not significantly influenced by the baseline component

• Do not describe how much information the prior introduces for given data

• Proposals for data-dependent EHSS:
• Apply approaches above to posterior and subtract data sample size
• Problematic if posterior has multiple peaks or is skewed

→ Data-dependent EHSS come with strong assumptions,
ECSS a natural alternative
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Robust mixture priors: Example
• y ∼ N(µ, 1) for varying µ, n = 100

Prior: µ ∼ 0.5N(0, 1/50) + 0.5N(0, 102)

• Prior EHSS based on weighted avg. of the mixture component EHSS = 25,
algorithm of Morita et al. provides a prior EHSS of 49
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• MSE increased for moderate conflict which is captured by ECSS
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Robust mixture priors: Bimodality
Examples with n = 20 to show effects of bimodality in the posterior
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Comp. [%]
informative 89.9
baseline 10.1

post. EHSS Morita et al.=48,  ECSS=−25
Posterior mean=0.16 at µ0=0.45
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Comp. [%]
informative 33.0
baseline 67.0

post. EHSS Morita et al.=0,  ECSS=−20
Posterior mean=0.6 at µ0=0.78

• Prior has strong impact on posterior means in both cases
• “posterior EHSS Morita et al.” not meaningful
• ECSS quantifies samples from homogeneous current population

(described by likelihood),
EHSS approaches try to quantify samples from heterogeneous

historical population (described by mixture)
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Example: Adjusting the control sample size in adaptive trial

• Two arm trial with ycontrol ∼ N(µ0,1), ytreat ∼ N(µ0 + τ,1);

H0 : τ ≤ 0 vs H1 : τ > 0

• Final control sample size adapted according to ESS at interim
• Compute ESS after 100 patients in control group
• Final sample sizes in test treatment 200, in control group 200− ESS

• E.g. Hobbs et al (2013), Schmidli et al (2014), Kim et al (2018);
all use EHSS with priors adapting to prior-data conflict

• However, ECSS intuitively more appropriate:
“How many control samples are offset by prior at final analysis?”
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Adaptive design cont’d (1)
• Informative prior µ ∼ N(0,1/50),

mixture prior µ ∼ 0.5N(0,1/50) + 0.5N(0,102)

• If ESS < 0, replace mixture by baseline prior (ESS = 0)
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Adaptive design cont’d (2)
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→Use of ECSS improves all operating characteristics
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Adaptive design cont’d (3): Results under known µ0
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Asserts that using ECSS equal MSEs under reduced samples sizes for all
priors would be obtained if µ0 would be known.
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R package “ESS”

Extends package RBesT for binary and normal outcomes

library(ESS)
info <-mixnorm(informative=c(1, 0, .14), sigma=1)
mix <-robustify(info, weight=.2, mean=0, sigma=1)
data=...

ehss(mix, method="mix.moment")
ecss(mix, data=data, n.target=100, min.ecss=-100)

Also supports empirical Bayes power priors (Gravestock & Held, 2017)

pp=as.powerprior(info)
# Full RBesT functionality can be applied to pp object
ehss(pp, data=data)
ecss(pp, data=data, n.target=100, min.ecss=-100)
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Conclusions & Outlook

The prior can often only be understood in the context of the likelihood
– Gelman, Simpson & Betancourt (2017)

• 2 frameworks of prior effective sample sizes
• EHSS quantifies historical observations used to elicit prior
• ECSS quantifies number of (virtual) samples from the current data model

• ECSS more appropriate than EHSS if data dependent measure desired

• ECSS provides framework applicable to any likelihood/prior setting

• Alternative measures to MSE may be more appropriate depending on
targeted characteristics and data distributions

• Potential for quantifying ESS in hierarchical models

• R package for binary and normal outcomes available on
https://github.com/wiesenfa/ESS
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Thank you!
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