Spatial and temporal variation in the Heinz Nixdorf Recall study and their effects on the risk of depression at the district level

Dany Djeudeu 1,2 , Susanne Moebus 2 , Karl-Heinz Jöckel 3 , Katja Ickstadt 1

¹Faculty of Statistics, TU Dortmund

 2 Centre for Urban Epidemiology (CUE), Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University Duisburg-Essen

³ Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, University Duisburg-Essen

08. Dezember 2017

Background

■ Increasing studies investigating urban effects on health

Spatial variation(dependencies) often not considered

 Change of spatial variation over time often not considered in longitudinal studies

Errors in the covariate effects

Aims

- Estimate the risk of a selected outcome at district level adjusting for district level covariates
- Estimate the change of spatial structure in health outcome
- Investigate the effects of spatial and temporal variation on covariate effects

Example:

Analysis of the effect of urban greenness on depression at district level

Orban et al., *Urban Residential Greenness and Depressive Symptoms: Results from the Heinz Nixdorf Recall Study*,2017, Journal of Transport and Health, 5, 3 – 63

Data set

Data of the Heinz Nixdorf Recall Study

■ Population-based cohort study of 4,814 randomly selected men and women

■ 45 − 75 years at baseline (2000 − 2003)

■ From Essen, Mülheim and Bochum in the metropolitan Ruhr area, Germany

Modeling approach

Variables, all on district level

Outcome : depression, aggregated

Exposure: greenness

 Covariates: unemployment in districts, Body Mass Index, multi-morbidity, education level, changed addresses

Modeling approach

Statistical methods

- Traditional Poisson model + incorporating covariate effects
- Moran's I statistic to test for the remaining spatial clustering in the residuals
- Besag-Newell method to detect clusters
- Smoothing the previous risk: weighted, Besag-york Molie Model smoothing r for each follow-up
- spatio-temporal autocorrelation via random effects

Definition-greenness

■ Normalized difference vegetation index (NDVI)

From satellite data

■ Values between -1 and 1, here only 0-1

■ District level neighborhood greenness

Measurements: 2003, 2006, 2009

Definition depression

■ Assessed using a 15-item short-form questionnaire of the CES-D

■ Scores 0 – 45

 \blacksquare Cut point: >= 17

Cases of depression aggregated at the district level

■ 9 measurement time points (between 2000 – 2013)

Result: Spatial autocorrelation over time

- Closer neighbour districts tend to have similar observations compared to districts farther away.
- \blacksquare Between -1 and 1
- Positive values indicate spatial autocorrelation

	Moran's I	p-value			
Jahr ₀ Jahr ₅	0.17 0.05	0.0024 0.16			
:	:	:			
Jahr ₁₀ :	-0.08 :	0.9			

Local clusters Besag-Newell, first follow up

Local clusters second follow up

Local clusters third follow up

SIR

Figure: The standardized incidence rate

Smoothed (weighted) SIR

Figure: The standardized incidence rate, weighted smoothing

Spatial distribution of NDVI 2006

Traditional Poisson model:Besag York Molie

$$\begin{cases} Y_k & \sim Poisson(\theta_k E_k) \\ In(\theta_k) & = X_k^T \beta + U_k + V_k \end{cases}$$

- $lacksquare V_i \sim N(0, au_{
 m v}^2)$: clustering in each spatial unit
- lacksquare U_i connection between adjacent units: using CAR (**CARspatial**)

$$[U_i|U_i, j \neq i, \tau_u^2 \sim N(\bar{u}_i, \tau_i^2),$$

$$\bar{u}_i = \frac{\sum_{j=1}^K w_{ij} u_j}{\sum_{j=1}^K w_{ij}} \text{ and } \tau_i^2 = \frac{\tau_u^2}{\sum_{j=1}^K w_{ij}}$$

- lacksquare $W = (w_{ij})_{i,j=1...K} = \text{adjacent matrix}$
- $X_k^T \beta = V_k = U_k = 0 \Rightarrow \text{Traditional Poisson model}$

Smoothed risk: Besag-York-Mollie (BYM) model

Figure: Risk estimate Besag-York-Mollie (BYM)

Model equation + spatio-temporal autocorrelation via random effects

$$\begin{cases} Y_{kt} & \sim \textit{Poisson}(\theta_{kt} E_{kt}) \\ \textit{In}(\theta_{kt}) & = X_{kt}^T \beta + \boxed{\psi}_{kt} \\ \beta & \sim \textit{N}(\mu_{\beta}, \Sigma_{\beta}) \end{cases} \text{ (prior for } \beta)$$

- $\mathbf{Y} = (\mathbf{Y}_1, \dots, \mathbf{Y}_N)_{K \times N}, \ \mathbf{Y}_t = (Y_{1t}, \dots, Y_{Kt}) = \text{the } K \times 1 \text{ column vector of observations for all } K \text{ spatial units for time period } t$
- θ_{kt} = risk (of depression) at time t in spatial unit k
- $\beta = (\beta_1, \dots, \beta_p)$: covariate regression parameters
- $\Psi = (\Psi_1, \dots, \Psi_N), \ \Psi_t = (\psi_{1t}, \dots, \psi_{Kt})$
- \blacksquare ψ_{kt} : random component for areal unit k and time period t

CAR-Model for random effect ψ

$$\begin{cases} \psi_{kt} &= \phi_{kt} \\ \phi_t | \phi_{t-1} &\sim \textit{N}(\rho_T \phi_{t-1}, \tau^2 \textit{Q}(\textit{W}, \rho_S)^{-1}), t = 2, \dots, \textit{N} \\ \phi_1 &\sim \textit{N}(0, \tau^2 \textit{Q}(\textit{W}, \rho_S)^{-1}) \\ \tau^2 &\sim \textit{Inverse} - \textit{Gamma}(\textit{a}, \textit{b}) \\ \rho_S, \rho_T &\sim \textit{Uniform}(0, 1) \\ \textit{Q}(\textit{W}, \rho_S) &= \rho_S[\textit{diag}(\textit{W}.1 - \textit{W})] + (1 - \rho_S)\textit{I} \end{cases}$$

- lacksquare $ho_{\mathcal{S}}, \,
 ho_{\mathcal{T}}$: spatial and temporal autoregressive parameter resp.
- $W = (w_{kj})$ = neighborhood matrix, w_{kj} = spatial closeness between the two areas
- \blacksquare $Q(W, \rho_S)$: precision matrix

Results Spatio-temporal model

model /	model I'	model //	model <i>II'</i>	model <i>III</i>	model III'	
Greenness	model / with	model / +	model //	Model//	Model III	
alone	$ ho_S = 0$	other covari-	with $\rho_S = 0$	+ unem-	Without	
		ates		ployment	spatial	
				status	effect	

	(ρ_T)			(ρ_S)		$ au^2$		NDVI				
	est.	95%	credi-	est.	95%	credi-	est.	95%	credi-	est.	95%	credi-
		ble in	terval	ble interval		ble interval			ble interval			
Model I	0.98	(0.90,	,0.99)	0.05	(0.004	1, 0.33)	0.02	(0.01,	0.05)	0.91	(0.86,	0.96)
Model I'	0.96	(0.87,	,0.99)	0	(0.00,	0.00)	0.02	(0.01,	0,03)	0.91	(0.86,	0.97)
Model II	0.98	(0.90,	,0.99)	0.05	(0.004	1,0.16)	0.02	(0.01,	0.03)	0.91	(0.86,	0.98)
Model II'	0.97	(0.91,	,0.99)	0	(0.00,	0.00)	0.02	(0.01,	0.03)	0.91	(0.85,	0.98)
Model III	0.98	(0.90,	,0.99)	0.08	(0.006	5, 0.28)	0.02	(0.01,	0.03)	0.96	(0.90,	1.01)
Model III'	0.98	(0.88,	,0.99)	0	(0.00,	0.00)	0.02	(0.01,	0.03)	0.97	(0.91,	1.04)

Conclusion and outlook

- Strong temporal trend
- Weak spatial trend, suggestive of neglecting it
- Greenness and depression negatively associated district unit
- \longrightarrow Random effects should be taken into account in observational studies when analysing health outcomes and environmental (risk)factors
 - Data limitation and missing values (dropout)
 - Spatial unit of analysis: appropriateness of aggregation
 - Next step: Analysing both individual and district-level covariates for the risk estimate at individual level