
Errors and uncertainty in variables –

When to worry and when to Bayes?

Stefanie Muff

Errors-in-Variables Workshop Mainz

2. December 2016

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 1 of 74



Motivation and introduction

Error types

The effects of ME

When to worry?

Bayesian ME modelling methods

MCMC

INLA

Examples

Final thoughts

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 2 of 74



Sources of measurement uncertainty / measurement

error (ME)

Measurement imprecision in the field or in the lab (length, weight,

blood pressure, etc.).

Errors due to incomplete or biased observations (e.g., self-reported

dietary aspects, health history).

Biased observations due to preferential sampling or repeated

observations.

Misclassification error (e.g., exposure or disease classification).

. . .

“Error” or “uncertainty”?
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The existence, effects and treatment of ME has been discussed in the

literature for more than a century (e.g. Pearson 1902, Wald 1940).

A standard reference is Fuller (1987).

More modern monographs are Gustafson (2004); Carroll et al. (2006);

Buonaccorsi (2010); Yi (2016).
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Why should ME not be ignored?

It is a fundamental assumption that explanatory variables are measured
or estimated without error, for instance for

the calculation of correlations.

linear, generalized linear and non-linear regressions and ANOVA.

survival analysis.

Most other modelling assumptions are routinely checked.

Violation of this assumption may lead to biased parameter estimates,

altered standard errors and p-values, incorrect covariate importances,

and to misleading conclusions.

Even standard statistics textbooks do often not mention these

problems.

Interestingly, the topic of missing data has received considerable

attention in the past decade – it is a special case of ME (or the other

way round...)!

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 5 of 74



Example 1: Inbreeding in Alpine ibex

Goal: To quantify effect of inbreeding on the intrinsic population growth

rate r0 of 26 Alpine ibex populations.

(Bozzuto et al., 2016)

Analysis: A simple linear regression with yi = log(r0)i as response

yi = β0 + βxxi + z>i βz + εi ,

and erroneous measure of inbreeding xi = fi for population i .
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If the estimated inbreeding values wi are plugged in the regression, the

naive estimate is

β̂x = −6.0 , 95% CI: [−11.2,−0.9] .

If, however, the uncertainty estimate of wi is included in an error

model, the estimate is

β̂x = −10.6 , 95% CI: [−17.2,−4.5] .

→ If the ME in wi is not accounted for, the estimated influence of

inbreeding on population growth is underestimated or attenuated.
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Example 2: Framingham heart study

Goal: To investigate the influence of systolic blood pressure (SBP) on

coronary heart disease from n = 641 males (Kannel et. al 1986).

Components:

Analysis:

the error-prone covariate xi = log(SBP − 50), measured twice.

the error-free covariate zi ∈ {0, 1} indicating smoking status.

response yi ∈ {0, 1} (diseased no/yes).

Logistic regression

ηi = logit[Pr(yi = 1)] = β0 + βxxi + βzzi .

Naive estimate: β̂x = 1.66, 95% CI: [0.70, 2.63].

ME-adjusted: β̂x = 1.89, 95% CI: [0.79, 3.01].
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Example 3: Miscounting error in a clinical trial

COPD: Chronic obstructive pulmonary disease

Exacerbation: A sudden worsening of symptoms that requires treatment with

antibiotics, corticosteroids or hospitalization.

Goal: Investigate the effect of a pharmacotherapy vs placebo (xi ∈ {0, 1})
on the number of exacerbations (yi ) of COPD patients (Calverley et al.,

2007).

Analysis: Negative binomial regression with exacerbation numbers as

outcome:

yi ∼ NBin (exp(log(ti ) + β0 + xiβx + ziβz ), θ)

Study duration was 3 years. Additional covariates zi , ti =actual time under

treatment (offset).

Problem: Exacerbation numbers yi are self-reported by the patients, and

thus miscounted.
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In a separate study, Frei et al. (2016) investigated the error in the

number of self-reported exacerbations for 409 patients during 3 years.

Comparison between patient self-reports si and consensus

classifications by a central adjudication committee, consisting of

several experienced physicians (“gold standard”, yi ).

0 1 2 3 4 5 6 7 8 9 10 11 12

0 127 24 5 4 2 2 1 0 0 0 0 0 0

1 26 40 5 2 1 3 0 0 0 0 0 0 0

2 9 17 10 4 2 1 0 0 0 0 0 0 0

3 3 6 7 10 2 3 2 1 0 0 0 0 0

4 1 7 3 6 2 3 2 1 0 0 0 1 0

5 0 3 5 4 0 4 1 1 0 0 0 0 0

6 0 2 4 1 6 1 2 0 0 0 0 0 0

7 0 2 2 0 2 0 0 0 0 0 0 0 0

8 0 0 0 2 2 0 1 2 1 0 0 0 1

9 2 0 0 1 0 0 0 1 1 0 0 0 0

10 ... ... ... ... ... ... ... ... ... ... ... ... ...

Table : Self-reports (rows) vs. centrally adjudicated numbers (columns).
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The external validation data were used to estimate the parameters of a

zero-inflated negative binomial error model:

si | yi ∼ ZINB (γ0 + γ1yi , pi , θE ) .

Modelling error accordingly, the actual treatment effect estimate

increases:

Naive rate ratio exp(β̂x ) = 0.86 (95% CI from 0.78 to 0.95)

Corrected rate ratio exp(β̂x ) = 0.80 (95% CI from 0.68 to 0.93)

(smaller=stronger)
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Overview of error types

Error in continuous vs error in categorical or count variables.

Classical vs Berkson error.

Differential vs non-differential error.

Error in covariates vs error in the response.

Error in linear regression vs error in a generalized linear (mixed) model.

...
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Notation

True response y.

True covariate that is subject to measurement error x.

The observed, erroneous proxy of x is denoted as w.

In the presence of reponse error, the observed, erroneous proxy of y is

denoted as s.

Other covariates observed without error z.
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Error in continuous covariates

We then distinguish between two different ME processes:

1 The classical ME model

w = x + u

2 The Berkson ME model

x = w + u
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The classical ME model

x is the correct but unobserved variable and w the observed proxy with error

u. Then

w = x + u

u ∼ N(0, σ2
uD) ,

is the classical ME model.
X

W

Usually, D = diag(d1, . . . , dn) and di ∝ σ2
u(xi ).

Assumption: u is independent of x; error is non-differential.
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Characteristics of classical ME

Or: How do I identify classical error/uncertainty in a variable?

Usually, classical ME occurs in the context of measurements, e.g., in

the field or in the lab.

A typical characteristic is that

σ2
w = σ2

x + σ2
u ,

that is: the measured variable w is more variable than the true x.
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The Berkson ME model

Again, x is the correct but unobserved variable and w the observed proxy

with error u. Then

x = w + u

u ∼ N(0, σ2
uD)

is the Berkson ME model.

(Berkson, 1950) W

X

Usually, D = diag(d1, . . . , dn) and di ∝ σ2
u(xi ).

Assumption: u is independent of w; error is non-differential.
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Characteristics of Berkson ME

Or: How do I identify Berkson error/uncertainty in a variable?

Berkson error can occur
in experimental settings (predefined fixed concentration or time

interval).

when a variable is rounded.

in exposure models, e.g. in environmental or epidemiologic studies.

A typical characteristic is that

σ2
x = σ2

w + σ2
u ,

meaning that the true variable x is more variable than the observed w.

x1

w

x2

x3

x4
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Of course, more complicated error structures are possible. Examples include

Classical error with dependencies on an error-free covariate z (Prentice

et al., 2002)

wi = γ0 + γ1xi + γ2zi + γ3xizi + ui .

Multiplicative error structures (additive on the log scale):

wi = xi · ui ⇒ log(wi ) = log(xi ) + log(ui )

Berkson and classical error in the same covariate.
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Error in binary/categorical covariables and counts

Binary and categorical variables are particularly relevant in

epidemiologic research → Misclassification.

Misclassification matrix:

Π =

(
0.8 0.25

0.2 0.75

)

Miscounting error: May occur in any count variable. Example:

self-reported cigarette consumption in survival or epidemiologic studies.

Average number of cigarettes wi
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Error in the outcome of regression models

Continuous error in a linear regression outcome.

Note: In the case when the observed response

si = yi + vi vi ∼ N(0, σ2
v ) ,

the error variance is simply absorbed in the residual variance σ2
ε .
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Misclassification of the (binary) outcome in logistic regression.

Miscounting error of the outcome in Poisson regression.
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Non-differential vs differential error

Non-differential error (Carroll et al., 2006):

Non-differential ME occurs when w contains no information about y other

than what is available in x and z.

Technically, this means that

y | {x, z,w} = y | {x, z} .

Differential error

The error is differential otherwise.

Note: In most error modelling approaches, the assumption is that the error

is non-differential!
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The effects of ME

1 The biasing effects of ME on the parameter estimates can be roughly

categorized into

Attenuation: the slope parameters are underestimated.

Reverse attenuation: the slope parameters are overestimated.

2 ME leads to a loss of power for detecting signals.

3 ME masks imporant features of the data, making graphical model

inspection difficult.

Carroll et al. (2006) call this the “Triple Whammy of Measurement

Error”.
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Effect of ME in linear regression

Find regression parameters β0 and βx for unobserved x:

yi = 1 · xi + εi , εi ∼ N(0, σ2
ε) .

Simulation: n = 100, σ2
ε = 1/100, σ2

x = σ2
u = 1.
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Bias in linear regression: Formulas

Let us look at the linear regression model

yi = β0 + βxxi + z>i βz + εi

with error-prone xi and error-free covariates zi .

Classical error:

When the observed covariate wi = xi + ui , ui ∼ N(0, σ2
u) is included instead

of xi , the estimated slope parameter is

β?x = λ · βx with λ =
σ2

x

σ2
x + σ2

u
,

where λ ≤ 1 is denoted as the attenuation factor.

Berkson error:

On the other hand, when the error is given as xi = wi + ui , ui ∼ N(0, σ2
u),

then β?x = βx , that is, no bias is expected!
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Attenuation or reverse attenuation?

In the presence of ME/uncertainty in a covariate, the β (slope) parameters

are often underestimated (“dilution bias”).

In (medical) studies, an implicit assumption is often that (treatment)

effects are conservative.

However, this it by no means always the case!

Examples that may induce reverse attenuation:

In the presence of collinear covariates (Freckleton, 2011).

When the error is differential (Mwalili et al., 2008).

In logistic regression, βx may be attenuated or reversely attenuated

when x is mismeasured (even for non-differential error)!

...
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Reverse attenuation example 1: collinear covariates

Situation:

yi = β0 + βxxi + βzzi + εi , Cov(x, z) 6= 0 .

Then: Parameters βz of covariate z measured without error may be biased

by the error in x. Naive least-squares does not estimate βz , but

β?z = βz + βx (1− λ)Γz ,

where Γz is the slope of z when x is regressed on z, i.e., E(x | z) = Γ01 + Γz z.

→ If Cov(x, z) > 0 then β?z > βz , thus reverse attenuation!
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Reverse attenuation example 2: heteroscedastic error

Assume we have a linear regression model including a continuous

error-prone covariate x, a binary covariate z ∈ {0, 1} indicating group

membership (e.g., sex), and an interaction term xz:

yi = β0 + βxxi + βzzi + βxzxizi + εi .

Further assume that the measurements of x are more precise for individuals

in group 0 than in group 1, i.e., that the error variance depends on zi .

Formally:

wi = xi + ui ,

{
ui ∼ N(0, σ2

u0
), if si = 0 ,

ui ∼ N(0, σ2
u1

), if si = 1 ,

and σ2
u0
< σ2

u1
.
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Let the true interaction coefficient be βxz = 0, but the error variance

heteroscedastic with σ2
u0
< σ2

u1
.
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a) When x is included in the regression, the regression lines y ∼ x for

groups 0 and 1 are parallel; no interaction, β̂xz = 0.

b) When w is included in the regression, the non-parallel regression lines for

y ∼ w indicate a spurious interaction, β̂xz > 0 (Muff and Keller, 2015).
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Effect of misclassification or miscounting in the

outcome

A misclassified or miscounted outcome (e.g. in logistic or Poisson

regression) typically induces attenuation of the regression parameters.

However, if the error distribution in the outcome depends in some way

on the covariates z, anything can happen...
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When do I have to worry?

Many applied scientists ask for guidelines to decide if the error they find in

their data can be tolerated, and when it is substantial, so that error

modelling is necessary.

Some thoughts from my side:

If analytical formulas to calculate the bias exist, you should use them

to obtain an estimate of the expected bias.

Otherwise, simulations are often a good idea: generate error-free data

and add error of the type you encounter in your case.

There is no general rule about the error that can be tolerated – this

must depend on your situation (e.g., clinical study vs explorative

analysis)
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A pragmatic check

Assume your error-prone variable has been measured repeatedly. Then try

the following:

1 Fit the model iteratively, each time including as variable only one

single measurement.

2 Fit the model iteratively, each time including the average of two

measurements.

3 Continue with 3, 4, ... measurements.

4 Finally, fit the model and include the average of all repeats.

5 Look at the trend of your estimates.

If there is a clear trend of your parameter estimates that worries you, error

modelling might be worth.

Note: This simple check is similar in spirit to the SIMulation EXtrapolation (SIMEX) idea (Cook and

Stefanski, 1994).
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Example of the “pragmatic check” idea when 4 repeated measurements are

available for a covariate:
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Analytic formulas: linear regression

For yi = β0 + βxxi + εi with error-prone covariate xi and classical error such

that wi = xi + ui , ui ∼ N(0, σ2
u), the biased versions of the parameters are

given as

β?x = λβx and β?0 = β0 + (1− λ)βxµx ,

with λ = σ2
x/(σ2

x + σ2
u).

β?x decreases with increasing

σ2
u:
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Analytic formulas: other regression types

There is no general formula for all regression types...

Some simple cases:

Berkson error in a continuous covariate of log-linear models (e.g.,

Poisson regression): All parameters unbiased, except β?0 = β0 + σ2
u/2.

Berkson error in a continuous covariate of Probit regression

(β = (β0, β1, ..)
>):

β? = β · (1 + σ2
u)−1/2 .

But generally, I recommend simulations to investigate potential effects.
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Simulations or apps

Shiny app for some classial error in linear, logistic and Poisson regression:
Classical error

Berkson error
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Caveats of error modelling

(Which might lead to the decision not to model the error.)

1 Bias vs variance trade-off:

Error analysis leads to an estimate with higher variability / more

uncertainty.

2 Error analysis comes at a cost:

Additional (internal/external) data is needed to estimate the structure

and parameters of the error model.

Estimates from external validation data are assumed to be

transportable, which is often not fulfilled.

And, believe me, error modelling can be tedious!

3 Loss of power:

Even when error is accounted for, power cannot be gained back.
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In any case, assessing the biasing effect of the error, as well as error

modelling, can be done only if the error structure (model) and the

respective model parameters (e.g., error variances) are known!

Therefore: Information about the error mechanism is essential, and

potential errors must be identified early in a study – ideally in the planning

phase.
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Error correction methods

Many different ME modelling approaches have been proposed:

Method-of-moments correction

Simulation extrapolation (SIMEX)

(Quasi-) Likelihood approaches

Multiple imputation

Bayesian methods

...
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Why Bayesian ME modelling?

1 Incorporation of prior knowledge:

Most non-Bayesian approaches require the precise estimation of error

model parameters (e.g., the error variance). Instead, Bayesian

approaches naturally allow to incorporate prior uncertainty.

2 Simple and general:

The formulation of Bayesian error models is usually straightforward

(hierarchical modelling).

3 Identifiability issues:

Most models with error components are nonidentifiable, e.g.:

wi = xi + ui with σ2
w = σ2

x + σ2
u .

The error variance σ2
u and the sampling variance σ2

x are confounded.

However, Bayesian approaches allow to estimate the posterior

distribution even if only crude information about σ2
u is available!

→ Partially identified models (Gustafson, 2005).

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 40 of 74



A word on (non)identfiability

The “Bayesian crank” can be turned even if a model is nonidentifiable

(Gustafson, 2015).

All we need is a legitimate probability distribution as prior distribution.

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 41 of 74



A word on notation

In the Bayesian context, variances are often parameterized as precisions.

Thus from now on, we will use, e.g.

τx = 1/σ2
x

τu = 1/σ2
u

τε = 1/σ2
ε

etc...
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Bayesian error modelling steps

(Assuming that a regression model is given, and that stucture and severity

of the error have been assessed.)

1 Formulate the error model.

2 Combine the regression and the error model into a hierarchical model.

3 Specify prior distributions for all parameters, in particular for the error

model parameters.

4 Estimate the posterior distribution using MCMC or INLA.
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Step 1: Formulate the error model

Remember the various error types and formulate a model that encodes for

the relation between the true and the observed variable.

Examples:

Continuous variables: wi = xi + ui or xi = wi + ui , ui homo- or

heteroscedastic.

Binary variables: Pr(wi = 1 | xi ) = exp(α0+αx xi )
(1+exp(α0+αx xi ))

Count variables: True counts yi vs obsered counts si

si | yi ∼ ZINB (γ0 + γ1yi , pi , θE ) .
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Step 2: Formulate a hierarchical model

The error model from step 1 is now combined with the regression model of

interest. The hierarchy is given by (at least) two levels:

Regression model (level 1)

Error model (level 2)

As an example, for linear regression with classical, homoscedastic ME in x,

the hierarchical model is given as

yi = β0 + βxxi + βzzi + εi , ε ∼ N(0, τεI)

wi = xi + ui , u ∼ N(0, τuI) .
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Step 3: Prior distributions

Prior specifications are needed for all unobserved variables.

In the example above, a model for x is needed, e.g., a so-called exposure

model

xi = αi + αzzi + εxi , εx ∼ N(0, τx I) .

Moreover, priors are needed for (β0, βx , βz ), and (α0, αz ), as well as

hyperpriors for τx , τu and τε.
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Step 4: Estimate the posterior distribution

Essentially two approaches:

Markov chain Monte Carlo (MCMC) sampling

Integrated nested Laplace approximations (INLA)
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MCMC

MCMC is very general, flexible and widely used.

A first rush of ME modelling with MCMC in the 1990s (Stephens and

Dellaportas, 1992; Richardson and Gilks, 1993).

However, case-specific implementation may be challenging: need to

specify full conditionals, sampling design, check mixing and

convergence properties...

Sampling can become rather time-consuming.

Generic software such as jags (Plummer, 2003) or Stan (Carpenter et

al., 2016) provide simple ways to perform MCMC sampling.
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INLA

INLA was introduced as a fast and accurate alternative to MCMC

sampling (Rue et al., 2009).

INLA is able to deal with latent Gaussian hierarchical models,

consisting of three sub-models:

Observation model y | v,θ1: Encodes information about data.

Latent model v |θ2: The unobserved process.

Hyperpriors for θ1,θ2: Models for the hyperparameters in the

observation and latent processes.

It has been shown that error modelling for continuous covariates

(classical and Berkson ME) is possible with INLA for generalized linear

mixed models (GLMMS, Muff et al., 2015) and for survival models.

Caveat: Misclassification error, response error in categorical and count

outcomes.
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Hierarchical model for classical ME in INLA

Observation model

Regression model: p(y | x, z,β,θ1)

E(y) = h1(β0 + βx x + z>βz )

Error model: p(w | x,θ2)

w = x + u , u ∼ N(0, τuD)

Latent model for v = (β0,β
>
z , α0,α

>
z , x

>)>

Exposure model for x: p(x |θ2)

x = α0 + z>αz + εx , εx ∼ N(0, τx I)

Independent Gaussian priors for (β0,β
>
z , α0,α

>
z )

Hyperpriors p(θ1), p(θ2) with θ2 = (βx , τu, τx )>

1monotonic inverse link function, y of exp. family form
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Joint model formulation for classical ME:

E(y) = h(β0 + βx x + z>βz ) ,

0 = −x + α0 + z>αz + εx , εx ∼ N(0, τx I) ,

w = x + u , u ∼ N(0, τuD) .

Challenges:

- x appears in all three levels of the model, with and without multiplication

by βx .

- Different likelihood functions are involved.



y1 NA NA

.

.

.

.

.

.

.

.

.

yn NA NA

NA 0 NA

.

.

.

.

.

.

.

.

.

NA 0 NA

NA NA w1.

.

.

.

.

.

.

.

.

.

NA NA wn.


︸ ︷︷ ︸

Y

= . . .

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 51 of 74



Definition in r-inla

Note the application of the “copy” function

> library(INLA)

> formula <- Y ~ f(beta.x, copy = "idx.x",

+ hyper = list(beta = list(param = prior.beta, fixed = FALSE))) +

+ f(idx.x, weight.x, model = "iid", values = 1:n,

+ hyper = list(prec = list(initial = -15, fixed = TRUE))) +

+ beta.0 - 1 + beta.z + alpha.0 + alpha.z

Note the definition of three likelihood functions
> r <- inla(formula, Ntrials = Ntrials, data = data,

+ family = c("binomial", "gaussian", "gaussian"),

+ control.family = list(

+ list(hyper = list()),

+ list(hyper = list(

+ param = prior.prec.x,

+ fixed = FALSE)),

+ list(hyper = list(

+ param = prior.prec.u,

+ fixed = FALSE))),

+ control.fixed = list(

+ mean = prior.beta[1],

+ prec = prior.beta[2])

+ )
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The mec model

If x is assumed independent of other covariates, a simplified model can

be formulated:

x = α0 + εx , εx ∼ N(0, τx I) .

For this case we implemented a model termed “mec”.

Technically, this is done by directly formulating a latent model for

ν = βx x. The model has four hyperparameters: βx , τx , τu, α0.
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Hierarchical model for the Berkson ME

Observation model

Regression model: p(y | x, z,β,θ1)

E(y) = h(β0 + βx x + z>βz )

Latent model for v = (β0,β
>
z , x

>)>

Error model: p(x |θ2)

x = w + u , u ∼ N(0, τuD)

Independent Gaussian priors for (β0,β
>
z )

Hyperpriors p(θ1), p(θ2) with θ2 = (βx , τu)>
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Joint model formulation for Berkson ME in INLA

E(y) = h(β0 + βx x + z>βz ) ,

−w = −x + u , u ∼ N(0, τuD) .

Things are easier here because the latent model for x is the same as

the error model:

x |w,θ ∼ N(w, τuD) .

Directly formulate a model termed “meb” with two hyperparameters

βx , τu by reparameterizing ν = βx x:

ν |w,θ ∼ N

(
βx w,

τu

β2
x

D

)
.
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Example 1: Inbreeding in Alpine ibex

Remember:

A simple linear regression with yi = log(r0)i as response

yi = β0 + βxxi + z>i βz + εi ,

and erroneous measure of inbreeding xi = fi for population i .

The error in xi is assumed to be classical: wi = xi + ui , and wi was

estimated from a separate analysis providing an error precision τ̂u(xi )

for each population (→ heteroscedastic error model).

INLA applicable?
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Yes!

Step 1: Formulate the error model (classical heteroscedastic error model)

Step 2: Formulate the hierarchical model:

y | x ∼ N(β0 + βx x + zβz, τεI),

w | x ∼ N(x, τuD) ,

with y the intrinsic growth rate and x the inbreeding coefficient.

Step 3: Prior distributions.

Assume x to be independent of other covariates:

x ∼ N(α01, τx I) .

β ∼ N(0, 10−4I) and α ∼ N(0, 10−4I)

Hyperpriors for τx , τu, τε are motivated by expert knowledge.
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Step 4: Estimate posterior distributions with r-inla :

> formula <- y ~ f(w, model = "mec", scale = error.prec, values=w, hyper = list(

+ beta = list(param = prior.beta, fixed = FALSE),

+ prec.u = list(param = prior.prec.u, fixed = FALSE),

+ prec.x = list(param = prior.prec.x, fixed = FALSE),

+ mean.x = list(initial = 0, fixed = TRUE))

+ ) + z1 + z2 + z3 + z4

> r <- inla(formula, data = data.frame(y, w, z1, z2, z3, z4, error.prec),

+ family = "gaussian",

+ control.family = list(

+ hyper = list(prec = list(param = prior.prec.y, fixed = FALSE)

+ )),

+ control.fixed = list(

+ mean.intercept = prior.beta[1],

+ prec.intercept = prior.beta[2]

+ )

+ )

(For more details, please consult the Supp. Mat. of Muff et al. (2015), or the

examples on the r-inla website at www.r-inla.org.)
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Posterior distribution of βx and βz , naive and error-corrected estimates:
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Example 2: Framingham heart study

Remember:

A binary regression model

ηi = logit[Pr(yi = 1)] = β0 + βxxi + βxzi

with systolic blood pressure as error-prone covariate xi = log(SBP − 50),

and response yi ∈ {0, 1} (diseased no/yes).

INLA applicable? Yes!
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Step 1: Classical, homoscedastic error model wi = xi + ui with

ui ∼ N(0, τu), each individual measured twice.

Step 2: Formulate the hierarchical model:

logit [Pr(y = 1)] = β0 + βx x + βz z ,

wj | x ∼ N (x, τuI) , j = 1, 2.

Step 3: Prior distributions

Assume x to depend on smoking status:

x | z ∼ N (α01 + αz z, τx I) .

β ∼ N(0, 10−2I) and α0, α1 ∼ N(0, 1).

Hyperpriors for τx and τu are motivated by expert knowledge.
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Step 4: Estimate posterior marginals with r-inla.

The example is also available on the r-inla website at www.r-inla.org.

Posterior distributions:

ME.INLA

MCMC

C.MCMC

C.ML

NAIVE
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●

●

●

●

●

βx
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●

●

●

●

●

βz
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Example 3: Miscounting error in a clinical trial

Remember:

Count outcome that was modelled with a negative binomial regression

model, including xi =treatment of patient i and other error-free

covariates zi .

The outcome is miscounted, that is, not yi was observed, but some

self-reported values si instead.

An external validation study gave information on the error structure

and error parameters (Frei et al., 2016).

INLA applicable? No! The hierarchical model is not latent Gaussian...
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Step 1: Miscounting error according to a zero-inflated negative binomial

model:

si | yi ∼ ZINB (γ0 + γ1yi , pi , θE ) , (1)

with logit(pi ) = δ0 + δ1I(yi > 0), where yi is unobserved.

Step 2: Combine the above error model with the regression model to a

hierarchical model:

yi ∼ Po (exp(log(ti ) + β0 + xiβx + ziβz )) .

Note that a Poisson regression model is used now.

Assumption: All extra-variability and zero-inflation in the measured

response is attributed to the miscounting process.
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Step 3: Priors:

Use a normal prior on (γ0, γ1, δ0, δ1) ∼ N(α̂, Σ̂) with parameters from

the fit of external validation data to the ZINB error model (1):

α̂ = (γ̂0, γ̂1, δ̂0, δ̂1) = (0.753, 0.966, 0.151,−3.174)

Σ̂ =


0.020 −0.007 0.033 −0.019

−0.007 0.007 −0.011 0.018

0.033 −0.011 0.122 −0.094

−0.019 0.018 −0.094 0.401



In addition: θ̂E = 6.09 with se(θ̂E ) = 2.03, thus a log-normal prior

θE ∼ LN(log(6.09), 0.332) was used.

Independent N (0, 10−2) priors on β.

Stefanie Muff (stefanie.muff@uzh.ch) Measurement error and uncertainty Page 65 of 74



Step 4: Estimate posterior marginals using r-jags. Example jags code

using fixed error model parameters α:

> model

> {

+ for (i in 1:Nobservations)

+ {

+ # Response model for true response; reduced model for illustration

+ Y.true[i] ~ dpois(exp(beta[1]+X[i]*beta[2] + loge[i]))

+

+ # Error model

+ Y.report[i] ~ dnegbin(thetaE/(thetaE + mu1[i]),thetaE)

+ mu1[i] <- mu2[i] * x[i] + 1E-09

+

+ mu2[i] <- alpha1[1] + alpha1[2]*Y.true[i]

+

+ x[i] ~ dbern(1-pro[i])

+ logit(pro[i]) <- LP[i]

+ LP[i] <- alpha1[3] + alpha1[4]*YY[i]

+ YY[i] <- Y.true[i]>0

+ }

+

+ # Priors:

+ for (i in 1:nbetas){beta[i]~dnorm(0,1.0E-2)}

+ Log_thetaE ~ dnorm(log(6.09),1/0.33^2)

+ thetaE <- exp(Log_thetaE)

+ }
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Two parallel MCMC chains with 25’000 iterations each and a burn-in

of 5’000 iterations were run to sample from the posterior distribution.

Computation time roughly 1 hour (on a slow remote environment).

Convergence was checked visually.
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Naive ML results and posterior 95% credible interval for the rate ratio

exp(β̂x ) of the treatment effect:

●

●

l l

l l

0.65 0.70 0.75 0.85 0.95

 Corrected

Naive

Rate ratio

→ The treatment effect was clearly underestimated in the naive analysis!
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A word on transportability

Problem: Using data from an external validation study may lead to a

prior-data-conflict → violation of the transportability assumption.

Idea: Adaptive weighting of the priors, using the recently suggested

adaptive prior weighting approach by Held and Sauter (2016). Multiply the

covariance matrix from the validation data with an unknown scalar g > 0,

leading to the prior

α | g ∼ N(α̂, gΣ̂) ,

with hyperprior

t =
g

g + 1
∼ U(0, 1) .

This allows to weight the error model priors α̂ with w = 1/g .
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Some (frequent) questions:

1 “I think I have error in my variables, but I don’t know its structure

and parameters. Can I do something?”

2 “Is it sometimes better to ignore the error, that is, not to model it?”

1 The short answer is: No.

But at least you could check the effects of potential errors, e.g. via

simulations.

2 Yes, absolutely! If the error is “neglectable”, error modelling introduces

additional uncertainty (bias-variance-tradeoff).

Moreover, if you don’t know your error structure, better don’t do

anything: You could make the bias worse.
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Summary

Uncertainty and error in covariates and response variables has various

effects (not just bias).

There are many different error mechanisms.

Error modelling is only possible when error structure and model

parameters are (approximately) known.

“When to worry?” depends on many aspects, especially on the context.

→ A pragmatic way to answer the question is by simulations.

Bayesian approaches are particularly useful for error modelling.

→ MCMC or INLA.
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Thank you for your attention!
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Appendix
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Defining a joint model

Challenge:

x appears in different levels of the model (either with βx or without).

Idea within INLA:

Create an almost identical copy x? for βx and extend the latent model to

xc = (x, x?), with π(xc ) = p(x) p(x? | x), and

p(x? | x, τ) ∝ exp
(
−τ

2
(x? − x)>(x? − x)

)
,

with precision τ fixed to some large value.
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Defining a joint model

Challenge:

x appears in different levels of the model (either with βx or without).

Idea within INLA:

Create an almost identical copy x? for βx and extend the latent model to

xc = (x, x?), with π(xc ) = p(x) p(x? | x), and

p(x? | x, τ , ψ) ∝ exp
(
−τ

2
(x? − ψx)>(x? − ψx)

)
,

with precision τ fixed to some large value. The copied model may contain

an unknown scale parameter ψ, which represents here βx .
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The mec model

Let us consider the simplified model without exposure model, i.e.,

η = βx x ,

w = x + u ,

x = α0 + εx ,

with u ∼ N (0, τuD) and εx ∼ N (0, τx I).

To be tractable by INLA, x must be representable as a Gaussian model.
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The mec model

The posterior distribution of x and θ is

p(x,θ | y,w) ∝ p(θ) p(x |θ) p(w | x,θ)︸ ︷︷ ︸
p(x |w,θ) p(w | θ)

p(y | x,θ)

Thus, x only enters in one term (apart from the likelihood) and can be

treated as an ordinary latent Gaussian model:

p(x |w,θ) ∝ p(x |θ) p(w | x,θ)

∝ exp
(
−τx

2
(x− α01)>(x− α01)− τu

2
(x− w)>D(x− w)

)
.

Combining the quadratic forms gives

x |w,θ ∼ N
[
(τxα01 + τuDw)(τx I + τuD)−1 , τx I + τuD

]
.
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The mec model

A more convenient model formulation is achieved by setting

βx x→ ν.

Then

ν |w,θ ∼ N
(
βx (τxα01 + τuDw)(τx I + τuD)−1,

τx I + τuD

β2
x

)
.

This model is termed “mec” within the R-package r-INLA. Its

hyperparameters are βx , τx , τu, α0.

Note that now both βx and α0 are considered as hyperparameters.
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The meb model

Let us consider the simplified model without covariates:

E(y) = βx x ,

x = w + u , u ∼ N (0, τuD) .

The latent model x|w,θ now corresponds to the error model.

It is thus straightforward to calculate the posterior distribution

p(x,θ | y,w) ∝ p(θ) p(x |w,θ) p(y | x,θ) .

Using the reparameterization ν = βx x leads to

ν |w,θ ∼ N
(
βx w,

τu

β2
x

D

)
.
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