## A practical GLMM example: Network meta-analysis of studies of binary outcomes – occurrence of exacerbations in COPD patients

Hendrik Schmidt<sup>1</sup>, Gerhard Nehmiz<sup>2</sup>

Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany.

1 Email: <a href="mailto:hendrik.schmidt@boehringer-ingelheim.com">hendrik.schmidt@boehringer-ingelheim.com</a> 2 Email: <a href="mailto:gerhard.nehmiz.ext@boehringer-ingelheim.com">gerhard.nehmiz.ext@boehringer-ingelheim.com</a>

We investigate the information on the relative effectiveness of several treatments in a network, so that all treatment contrasts can be analysed in one model, including direct as well as indirect evidence<sup>[1]</sup>. The example is a network of 5 inhalative treatments, investigated in double-blind trials, in patients with Chronic Obstructive Pulmonary Disease (COPD): Tiotropium (a long-acting anticholinergic), Salmeterol, Indacaterol, Formoterol (3 long-acting  $\beta_2$ -agonists), and placebo. The selection of studies has been described recently<sup>[2]</sup>. All trials lasted minimally 24 weeks and maximally 1 year. The binary endpoint is the occurrence of at least 1 exacerbation of the COPD during the trial.

The GLMM for the proportion  $\pi$  of patients with event on treatment i in study k and arm ik is

```
Logit (\pi_{ik}) = \tau_i + \mu_k + a_{ik} with \mu_k fixed for all k, \tau_i fixed for all i, a_{ik} \sim N(0,\sigma^2), \tau_1=0 (Placebo) and \mu_1=0 (Study 1).
```

Treatment contrasts can then be estimated through this common model for all 5 treatments. In total, 31 trial arms are included.

We compare the classical frequentist method<sup>[1]</sup>, the MCMC method as implemented in WinBUGS<sup>[3]</sup>, and, as deterministic-numerical approximation to the distribution of treatment contrasts, the Integrated Nested Laplace Approximation (INLA) method<sup>[4]</sup>. We investigate here in particular the goodness of the approximation. We show also an intuitive graphical result summary<sup>[5]</sup>. In this example the medical results did not differ by much. This was valid for the treatment differences as well as for the ordering of the treatments.

## References:

- 1. Jones B, Roger J, Lane PW et al. Statistical approaches for conducting network meta-analysis in drug development. Pharmaceutical Statistics 2011; 10: 523-531
- 2. Buhl R, Vogelmeier C, Kögler H et al. Network Meta-analysis Comparing Tiotropium With Long-acting  $\beta_2$ -agonists. Poster #G69, Abstract A4365, International Conference of the American Thoracic Society, Philadelphia/PA 2013
- 3. Woods BS, Hawkins N, Scott DA. Network meta-analysis on the log-hazard scale, combining count and hazard ratio statistics accounting for multi-arm trials: A tutorial. BMC Medical Research Methodology 2010; 10(54): 1-9
- 4. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations (with discussion). Journal of the Royal Statistical Society, Series B, 2009; 71: 319-392
- 5. Salanti G, Ades AE, Ioannidis JPA. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. Journal of Clinical Epidemiology 2011; 64: 163-171