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• parameter space {AAAA, BBBB}, sample space {0, 1} (sample X  of size 1)  

  

                            θθθθ                                 X   X   X   X   
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• unknown param. θ  = species  

 A:  A:  A:  A: Quercus petraea  

 B:  B:  B:  B: Quercus robur   

  

• obs. X  = length of acorn stalk  

 0: 0: 0: 0: no long stalk visible  

 1: 1: 1: 1: long stalk visible  

  



Quercus petraea Quercus petraea Quercus petraea Quercus petraea or or or or Quercus roburQuercus roburQuercus roburQuercus robur ?  ?  ?  ?  

  

• parameter space {AAAA, BBBB}, sample space {0, 1} (sample X  of size 1)  
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• estimator for θ :  

   =    

 (maximum likelihood) 

• 95%-confidence region for θ :  

 C =    

• 5%-test for H  : θ  = BBBB: Reject  

 H  if and only if X  = 0.  

     (power = 80%)  

ˆ θ  { AAAA if X  = 0  

BBBB if X  = 1  

{ {AAAA} if X  = 0  

{AAAA, BBBB} if X  = 1  

0 

0 



Statistical decision theory  Statistical decision theory  Statistical decision theory  Statistical decision theory  

  

Basic approach (classical): (Fisher 1921, Neyman & Pearson 1933) 

    

    

  

Broad framework: (Wald 1940s) 

    

    

(1)  Choose a strategy that, before the observation, leads to reason-

able results with high probability for every possible parameter 

value.  

(2)  Stick to that strategy after  the observation.  

  •  Specify the loss associated with every possible action as a function 

of θ  (loss function).  

  •  Compare different decision rules by looking at the expected value 

(mean) of the loss, as a function of θ  (risk function).  



Classical approach: Estimating Classical approach: Estimating Classical approach: Estimating Classical approach: Estimating θ   θ   θ   θ   

  

• loss for estimator  :  0 0 0 0 if   = θ  and 500 500 500 500 if   ≠ θ   

  

    

ˆ θ  ˆ θ  ˆ θ  
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  losses:  

• conclude A A A A – red  

• conclude B B B B – blue  

  



Classical approach: Estimating Classical approach: Estimating Classical approach: Estimating Classical approach: Estimating θ   θ   θ   θ   

  

• loss for estimator  :  0 0 0 0 if   = θ  and 500 500 500 500 if   ≠ θ   

  

    

ˆ θ  ˆ θ  ˆ θ  

                        θθθθ                                 X   X   X   X   
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  losses:  

• conclude A A A A – red  

• conclude B B B B – blue  

 estimator  mean loss if   

   

  

•    is not admissible (   better).  

  

•    is minimax estimator (mini-

mizes the maximum mean loss).  

 θ  = A A A A θ  = BBBB  
       
   = AAAA 0 500  

   =   100 25  

   =   400 475  

   = BBBB 500 0 

ˆ θ  3 
ˆ θ  2 

ˆ θ  2 

ˆ θ  1 

ˆ θ  2 { AAAA if X  = 0  
BBBB if X  = 1  

ˆ θ  3 { BBBB if X  = 0  
AAAA if X  = 1  

ˆ θ  4 



Bayesian approach: Estimating Bayesian approach: Estimating Bayesian approach: Estimating Bayesian approach: Estimating θ   θ   θ   θ   

  

• loss for estimator  :  0 0 0 0 if   = θ  and 500 500 500 500 if   ≠ θ   

  

    

ˆ θ  ˆ θ  ˆ θ  
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Bayesian approach: Estimating Bayesian approach: Estimating Bayesian approach: Estimating Bayesian approach: Estimating θ   θ   θ   θ   

  

• loss for estimator  :  0 0 0 0 if   = θ  and 500 500 500 500 if   ≠ θ   

  

    

ˆ θ  ˆ θ  ˆ θ  

                        θθθθ                                 X   X   X   X   
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     estimator  mean  

     

    

•  Conclusions can be based 

on non-conditional mean 

losses:  

 loss   
       
   = AAAA 200  

   =   70  

   =   430  

   = BBBB 300 

•     is the unique optimal  

Bayes estimator.  

ˆ θ  1 

ˆ θ  2 { AAAA if X  = 0  
BBBB if X  = 1  

ˆ θ  3 { BBBB if X  = 0  
AAAA if X  = 1  

ˆ θ  4 

ˆ θ  2 
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loss for estimator  :  

• 0 0 0 0 if   = θ , 500 500 500 500 if   ≠ θ   

• plus 75 75 75 75 for each  

 observation needed  

  

  

  

  

  

  

  

losses:  

• conclude A A A A – red  

• continue – black  

• conclude B B B B – blue  

1 1 1 1 2 2 2 2 
ˆ θ  

ˆ θ  ˆ θ  



Sequential procedure (Bayesian): Estimating Sequential procedure (Bayesian): Estimating Sequential procedure (Bayesian): Estimating Sequential procedure (Bayesian): Estimating θ   θ   θ   θ   

  

                               θθθθ                                     X X X X                                         X   X   X   X   
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21.6621.6621.6621.66 + + + +
        0000

   

  

  

  

  

  

  

  

  

  

  

  

losses:  

• conclude A A A A – red  

• continue – black  

• conclude B B B B – blue  

1 1 1 1 2 2 2 2 
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                               θθθθ                                     X X X X                                         X   X   X   X   

  

    7.67.67.67.6
    9.3 +9.3 +9.3 +9.3 +
54.454.454.454.4

        

144.4144.4144.4144.4
    23.7 +23.7 +23.7 +23.7 +
    13.613.613.613.6

152152152152
    33 +33 +33 +33 +
    68686868

        8888
    42 +42 +42 +42 +
272272272272

160160160160
    75 +75 +75 +75 +
340340340340

        0.40.40.40.4
    32.7 +32.7 +32.7 +32.7 +
    217.6217.6217.6217.6

    7.67.67.67.6
    9.3 +9.3 +9.3 +9.3 +
54.454.454.454.4

33 + 7.6 + 13.6 33 + 7.6 + 13.6 33 + 7.6 + 13.6 33 + 7.6 + 13.6 
= 54.2= 54.2= 54.2= 54.2

75 + 8 + 54.2 75 + 8 + 54.2 75 + 8 + 54.2 75 + 8 + 54.2 
= 137.2= 137.2= 137.2= 137.2

   

  

  

  

  

  

  

  

  

  

  

  

losses:  

• conclude A A A A – red  

• continue – black  

• conclude B B B B – blue  

  

1 1 1 1 2 2 2 2 
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 Optimal strategy   Optimal strategy   Optimal strategy   Optimal strategy  

(for given prior and losses)  (for given prior and losses)  (for given prior and losses)  (for given prior and losses)  



Problems  Problems  Problems  Problems  

  

  

  

    

  

  

  

    

  

  

    

•  Classical or Bayesian – which one is better?  

•  Classical approach: among admissible decision rules (minimax, 

minimax-regret, ...), which choice is the best?  

•  Can we justify basing inference on probabilities or expected values? 

What is probability?  
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• maximum value 100% = 1 for events to be treated like sure ones  

• (countably) additive  

  

 

  



Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  

  

• maximum value 100% = 1 for events to be treated like sure ones  

• (countably) additive (Kolmogorov 1933) 

  

Frequentist interpretation:  Frequentist interpretation:  Frequentist interpretation:  Frequentist interpretation:  

    

    

  

  

a.  (random sampling:) probability = proportion of population  

when drawing an element at random (all equally probable)  

b.  (random experiments:) probability = long-term relative frequency  

almost surely for independent repetitions under uniform conditions  

(law of large numbers) (J. Bernoulli 1713, Kolmogorov, de Finetti) 



Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  Probability: degree an event is supposed at to occur  

  

• maximum value 100% = 1 for events to be treated like sure ones  

• (countably) additive (Kolmogorov 1933) 

  

Frequentist interpretation:  Frequentist interpretation:  Frequentist interpretation:  Frequentist interpretation:  

    

    

  

⇒ Other interpretations usually lead to the same probabilities  

 (consider a hypothetical population or random experiment).  

  

Probabilities can model degrees of belief – subjective interpretation.  subjective interpretation.  subjective interpretation.  subjective interpretation.  

  

Probabilities manifest themselves in decisions. (Ramsey 1926, de Finetti) 

a.  (random sampling:) probability = proportion of population  

when drawing an element at random (all equally probable)  

b.  (random experiments:) probability = long-term relative frequency  

almost surely for independent repetitions under uniform conditions  

(law of large numbers) (J. Bernoulli 1713, Kolmogorov, de Finetti) 



Decision-theoretic concept of probability  Decision-theoretic concept of probability  Decision-theoretic concept of probability  Decision-theoretic concept of probability  

  

  

Let (S , �) be totally bounded space. If and only if S is complete, the 

decision principle  

 f  ≽ g ⇔ expect. of f  ≥ expect. of g for all measures in C*   

defines a one-to-one correspondence between  

  

    

  

    

  

•  closed convex sets C* of regular probability measures on S ,  

•  preference relations ≽ on �  



Decision-theoretic concept of probability  Decision-theoretic concept of probability  Decision-theoretic concept of probability  Decision-theoretic concept of probability  

  

  

Let (S , �) be totally bounded space. If and only if S is complete, the 

decision principle  

 f  ≽ g ⇔ expect. of f  ≥ expect. of g for all measures in C*   

defines a one-to-one correspondence between  

  

    

  

    

  

  

Probabilities are here the means of deriving decisions consistent with Probabilities are here the means of deriving decisions consistent with Probabilities are here the means of deriving decisions consistent with Probabilities are here the means of deriving decisions consistent with 

a given initial set of decisions.  a given initial set of decisions.  a given initial set of decisions.  a given initial set of decisions.  

•  closed convex sets C* of regular probability measures on S ,  

•  preference relations ≽ on �  
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A totally bounded space totally bounded space totally bounded space totally bounded space is a set S together with a linear space � of 

bounded real-valued functions on S that includes all constant functions 

and is closed under uniform limits and pointwise maxima (or multiplication).  
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A totally bounded space totally bounded space totally bounded space totally bounded space is a set S together with a linear space � of 

bounded real-valued functions on S that includes all constant functions 

and is closed under uniform limits and pointwise maxima (or multiplication).  

  

In S we have the topology generated by the functions in �, i. e. x  

converges to x if and only if lim f (x ) = f (x ) for all f  in �.  

  

  

n 

n 



Totally bounded spaces  Totally bounded spaces  Totally bounded spaces  Totally bounded spaces  

  

  

A totally bounded space totally bounded space totally bounded space totally bounded space is a set S together with a linear space � of 

bounded real-valued functions on S that includes all constant functions 

and is closed under uniform limits and pointwise maxima (or multiplication).  

  

In S we have the topology generated by the functions in �, i. e. x  

converges to x if and only if lim f (x ) = f (x ) for all f  in �.  

  

S is complete complete complete complete if existence of lim f (x ) for all f  in � implies convergence to an 

x in S , for every net (x ). These are precisely the compact regular topologi-

cal spaces S with the set � of continuous real-valued functions. Examples: 

    

n 

n 

n 

n 

• all finite sets  

• all closed intervals  

• the extended real numbers  

• any products of such spaces  
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A regular probability measure regular probability measure regular probability measure regular probability measure on a totally bounded space (S , �) is 

a normalized positive linear functional m on � that can be extended 

to a set including indicator functions of closed sets such that for all 

φ, ψ into totally bounded spaces (S′, �′) and factors α , whenever 

f  ↦ m(f  ∘ φ) − α m(f  ∘ ψ), f  ∈ �′, is a positive linear functional, the 

same is true for the extension.  
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A regular probability measure regular probability measure regular probability measure regular probability measure on a totally bounded space (S , �) is 

a normalized positive linear functional m on � that can be extended 

to a set including indicator functions of closed sets such that for all 

φ, ψ into totally bounded spaces (S′, �′) and factors α , whenever 

f  ↦ m(f  ∘ φ) − α m(f  ∘ ψ), f  ∈ �′, is a positive linear functional, the 

same is true for the extension.  

  

Equivalently, m defines an integral ∫ f (x ) m(dx ) (“expected value of f”) 

equal to lim m(f ) for limits of increasing (or decreasing) nets (f ) in � 

and with the usual properties for Borel measurable functions.  

  

n  n 
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A regular probability measure regular probability measure regular probability measure regular probability measure on a totally bounded space (S , �) is 

a normalized positive linear functional m on � that can be extended 

to a set including indicator functions of closed sets such that for all 

φ, ψ into totally bounded spaces (S′, �′) and factors α , whenever 

f  ↦ m(f  ∘ φ) − α m(f  ∘ ψ), f  ∈ �′, is a positive linear functional, the 

same is true for the extension.  

  

Equivalently, m defines an integral ∫ f (x ) m(dx ) (“expected value of f”) 

equal to lim m(f ) for limits of increasing (or decreasing) nets (f ) in � 

and with the usual properties for Borel measurable functions.  

  

Example: If S is a separable metrizable space (finite set, interval, ...), 

these are precisely the integrals for Borel probability measures.  

  

Convergence m  → m is again defined by lim m (f ) = m(f ) for all f  in �. 

n  n 

n n 



Theorem  Theorem  Theorem  Theorem  

  

  

Let (S , �) be totally bounded space. If and only if S is complete, the 

decision principle  

 f  ≽ g ⇔ m(f ) ≥ m(g) for all m in C*  

defines a one-to-one correspondence between  

  

    

  

    

    

  

  

 (Schlicht 2015 Positivity ; cf. Walley 1991, Statist. Reasoning with Imprecise Prob.) 

•  closed convex sets C* of regular probability measures on S ,  

•  relations ≽ on � with the following properties:  

   (1) f ≽ g depends only on the difference f  − g,  

 (2) f ≽ g is implied by each of f  ≥ g; αf  ≽ αg for some α > 0;  

 f  ≽ 0 ≽ g; f  + c ≽ g for all sufficiently small c > 0.  



Theorem  Theorem  Theorem  Theorem  

  

  

Let (S , �) be totally bounded space. If and only if S is complete, the 

decision principle  

 f  ≽ g ⇔ m(f ) ≥ m(g) for all m in C*  

defines a one-to-one correspondence between  

  

    

  

    

    

  

It is sufficient to assume ≽ is defined only on those functions in � with 

values in a given neighborhood of 0; this can help justifying (1) and (2).  

•  closed convex sets C* of regular probability measures on S ,  

•  relations ≽ on � with the following properties:  

   (1) f ≽ g depends only on the difference f  − g,  

 (2) f ≽ g is implied by each of f  ≥ g; αf  ≽ αg for some α > 0;  

 f  ≽ 0 ≽ g; f  + c ≽ g for all sufficiently small c > 0.  



Theorem  Theorem  Theorem  Theorem  

  

  

The theorem gives a decision-theoretic justification for  

  

    

  

    

  

    

  

•  classical statistical models: a set C* corresponding to all possible 

priors,  

•  Bayesian models: a set C* with a single element,  

•  between these two extremes: a wide range of models where prior 

information is only partially probabilistically determined:  

• robust Bayesian approaches  

• imprecise probability models  

• many others  



Example: Mixed-effect models  Example: Mixed-effect models  Example: Mixed-effect models  Example: Mixed-effect models  

  

  

Responses in a linear mixed model are linear combinations of  

    

    

    

  

The coefficients in (2) differ from the terms in (3) in that their values 

are a target of statistical inference.  

  

Here we have a situation in which the unknown parameters are partly 

determined by probabilistic prior information.  

(1)  completely unknown coefficients that determine “fixed effects”,  

(2)  coefficients following distributions that determine “random effects”,  

(3)  stochastic terms (“errors”).  



Example: Prediction  Example: Prediction  Example: Prediction  Example: Prediction  

  

  

Often we want to draw conclusions not only about unknown parame-

ters, but also about unknown future observations (prediction).  

  

So again we have a situation in which quantities with partially deter-

mined probability distributions are the target of statistical inference.  



Example: Sequential estimation of Example: Sequential estimation of Example: Sequential estimation of Example: Sequential estimation of θ   θ   θ   θ   

  

    

  

                           θθθθ                                     X X X X                                         X   X   X   X   
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80%80%80%80%

20%20%20%20%

20%20%20%20%

95%95%95%95%

5%5%5%5%

5%5%5%5%

95%95%95%95%

80%
80%
80%80%

20%20%20%20%

5%5%5%5%

95%
95%
95%
95%

60% to
 70%

60% to
 70%

60% to
 70%

60% to
 70%

30% to 40%

30% to 40%

30% to 40%

30% to 40%

   

loss for estimator  :  

• 0 0 0 0 if   = θ , 500 500 500 500 if   ≠ θ   

• plus 75 75 75 75 for each  

 observation needed  

1 1 1 1 2 2 2 2 
ˆ θ  

ˆ θ  ˆ θ  
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                               θθθθ                                     X X X X                                         X   X   X   X   

  
  

        

   

loss for estimator  :  

• 0 0 0 0 if   = θ , 500 500 500 500 if   ≠ θ   

• plus 75 75 75 75 for each  

 observation needed  

  

        

        

        

        

        

        

        

                                                            

1 1 1 1 2 2 2 2 
ˆ θ  

ˆ θ  ˆ θ  

Optimal strategy for  Optimal strategy for  Optimal strategy for  Optimal strategy for  

imprecise prior  imprecise prior  imprecise prior  imprecise prior  

    30% 30% 30% 30% ≤ ≤ ≤ ≤ PPPP ((((θ  θ  θ  θ  = = = = BBBB) ≤ ) ≤ ) ≤ ) ≤ 40%  40%  40%  40%  
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Solution Solution Solution Solution 1 (1 (1 (1 (honest): honest): honest): honest): If we cannot decide, we cannot decide.  

    

    

  

•  There are situations with too little information, or too much informa-

tion that cannot be classified, to make well-founded decisions.  

•  Ideally, strategies at least close to optimal can be found.  
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Solution Solution Solution Solution 1 (1 (1 (1 (honest): honest): honest): honest): If we cannot decide, we cannot decide.  

    

    

  

Solution Solution Solution Solution 2 (2 (2 (2 (theoretical): theoretical): theoretical): theoretical): Consider a broader inference model.  

    

    

 (D. Bernoulli 1738) 

  

•  There are situations with too little information, or too much informa-

tion that cannot be classified, to make well-founded decisions.  

•  Ideally, strategies at least close to optimal can be found.  

•  A decision-theoretic approach (e. g. gains / losses following (1) – (2)) 

may be too narrow.  

•  More general approaches may not even lead to probabilities.  
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Solution Solution Solution Solution 1 (1 (1 (1 (honest): honest): honest): honest): If we cannot decide, we cannot decide.  

    

    

  

Solution Solution Solution Solution 2 (2 (2 (2 (theoretical): theoretical): theoretical): theoretical): Consider a broader inference model.  

    

    

  

Solution Solution Solution Solution 3 (3 (3 (3 (practical): practical): practical): practical): Restrict possible strategies  

    

    

    

    

•  There are situations with too little information, or too much informa-

tion that cannot be classified, to make well-founded decisions.  

•  Ideally, strategies at least close to optimal can be found.  

•  A decision-theoretic approach (e. g. gains / losses following (1) – (2)) 

may be too narrow. (D. Bernoulli 1738) 

•  More general approaches may not even lead to probabilities.  

•  Classical: significance levels, invariance, minimax, ...  

  Bayesian: Invent a prior, e. g. uniform distribution. (Laplace 1814) 

•  Simplify model by removing information  

•  This is somewhat arbitrary – why don’t those decision criteria appear 

in the original model?  
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•  If there is prior information that justifies a unique prior distribution, 

consider Bayesian methods.  

•  If there is prior information that cannot be captured in a single prob-

ability distribution, consider a range of reasonable prior distributions 

and check if the conclusions essentially remain the same.  

•  If there is no prior information at all (or one does not want to use such 

information) the results have a descriptive relevance, but general 

conclusions are hard to justify; even classical inferential procedures 

assume the considered alternatives are reasonably possible.  



Summary  Summary  Summary  Summary  

  

    

  

    

  

    

•  Statistical decision theory justifies the separation of ignorance into 

probabilistic and completely unknown parts:  

    

    

    

•  In many situations there is no unique optimal strategy. This leads 

to various competing solutions:  

    

    

Recommendation: Consider a range of reasonable priors.  

•  Optimal strategies can exist even in sequential, imprecise settings.  

•  Classical: parameter unknown, sample probabilistic  

•  Bayesian: everything probabilistic  

•  in between: imprecise priors, robust Bayesian approaches, ...  

•  Classical solutions are easy to apply and to communicate in 

standard situations, but justifications are weak.  

•  Bayesian solutions impose rather arbitrary precise priors.  
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