Approximate Bayesian inference for latent Gayesian models

Håvard Rue¹
Department of Mathematical Sciences
NTNU, Norway

December 4, 2009

Latent Gaussian models have often the following hierarchical structure

- Observed data \mathbf{y} , $y_i|x_i \sim \pi(y_i|x_i, \boldsymbol{\theta})$
- Latent Gaussian field $\mathbf{x} \sim \mathcal{N}(\cdot, \mathbf{\Sigma}(\theta))$
- Hyperparameters θ
 - variability
 - length/strength of dependence
 - parameters in the likelihood

$$\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \ \pi(\mathbf{x} \mid \boldsymbol{\theta}) \prod_{i \in \mathcal{I}} \pi(y_i \mid x_i, \boldsymbol{\theta})$$

Latent Gaussian models have often the following hierarchical structure

- Observed data **y**, $y_i|x_i \sim \pi(y_i|x_i, \theta)$
- Latent Gaussian field $\mathbf{x} \sim \mathcal{N}(\cdot, \mathbf{\Sigma}(\theta))$
- Hyperparameters heta
 - variability
 - length/strength of dependence
 - parameters in the likelihood

$$\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \ \pi(\mathbf{x} \mid \boldsymbol{\theta}) \prod_{i \in \mathcal{I}} \pi(y_i \mid x_i, \boldsymbol{\theta})$$

Latent Gaussian models have often the following hierarchical structure

- Observed data **y**, $y_i|x_i \sim \pi(y_i|x_i, \theta)$
- Latent Gaussian field $\mathbf{x} \sim \mathcal{N}(\cdot, \mathbf{\Sigma}(\theta))$
- Hyperparameters θ
 - variability
 - length/strength of dependence
 - parameters in the likelihood

$$\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \ \pi(\mathbf{x} \mid \boldsymbol{\theta}) \prod_{i \in T} \pi(y_i \mid x_i, \boldsymbol{\theta})$$

Latent Gaussian models have often the following hierarchical structure

- Observed data **y**, $y_i|x_i \sim \pi(y_i|x_i, \theta)$
- Latent Gaussian field $\mathbf{x} \sim \mathcal{N}(\cdot, \mathbf{\Sigma}(\theta))$
- Hyperparameters θ
 - variability
 - length/strength of dependence
 - parameters in the likelihood

$$\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \ \pi(\mathbf{x} \mid \boldsymbol{\theta}) \prod_{i \in \mathcal{I}} \pi(y_i \mid x_i, \boldsymbol{\theta})$$

Example: Generalised additive (mixed) models

$$g(\mu_i) = \sum_j f_j(z_{ji}) + \sum_k \beta_j \widetilde{z}_{ji} + \epsilon_i$$

where

- each $f_j(\cdot)$, is a smooth (random) function
- β_j is the linear effect of z_j

Observations $\{y_i\}$ from an exponential family with mean $\{\mu_i\}$

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

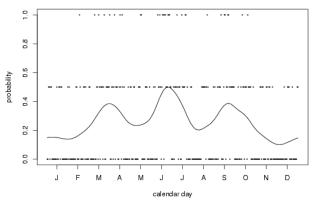
- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

- 1D Smoothing count data, general spline smoothing, semi-parametric regression, GLM(M), GAM(M), etc
- 2D Disease mapping, log-Gaussian Cox-processes, model-based geostatistics, 1D-models with spatial effect(s)
- 3D Time-series of images, spatio-temporal models.

- Dimension of the latent Gaussian field, n, is large, $10^2 10^5$, but often Markov.
- Dimension of the hyperparameters $\dim(\theta)$ is small, 1-5, say.
- Dimension of the data dim(y) might vary, but is often non-Gaussian.

L_{EXAMPLES: 1D}

$Examples\ of\ latent\ Gaussian\ {\it models:}\ 1D$



L_{EXAMPLES: 1D}

Longitudinal mixed effects model: Epil-example from BUGS

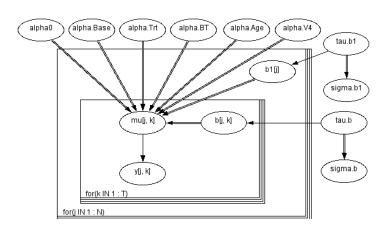
Patient	y ₁	y ₂	Уз	У 4	Trt	Base	Age
1	5	3	3	3	0	11	31
2	3	5	3	3	0	11	30
3	2	4	0	5	0	6	25
4	4	4	1	4	0	8	36
8	40	20	21	12	0	52	42
9	5	6	6	5		12	37
 59	1	4	3	2	1	12	37

$Longitudinal\ mixed\ effects\ model:\ Epil-example\ from\ BUGS$

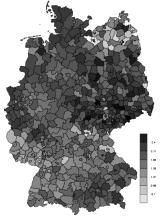
$$\begin{split} y_{jk} &\sim \mathsf{Poisson}(m_{jk}) \\ &\log m_{jk} = a_0 + a_{\mathsf{Base}} \log(\mathsf{Base}_{\mathsf{j}} / 4) + a_{\mathsf{Trt}} \mathsf{Trt}_{\mathsf{j}} + a_{\mathsf{BT}} \mathsf{Trt}_{\mathsf{j}} \log(\mathsf{Base}_{\mathsf{j}} / 4) + \\ &a_{\mathsf{Age}} \, \mathsf{Age}_{\mathsf{j}} + a_{\mathsf{V4}} \mathsf{V}_{\mathsf{4}} + \mathsf{b1}_{\mathsf{j}} + \mathsf{b}_{\mathsf{jk}} \\ &\mathsf{b1}_{\mathsf{j}} \sim \, \mathsf{Normal}(0, \mathsf{t_{b1}}) \\ \\ &\mathsf{b}_{\mathsf{jk}} \sim \, \mathsf{Normal}(0, \mathsf{t_{b}}) \end{split}$$

EXAMPLES: 1D

Longitudinal mixed effects model: Epil-example from BUGS

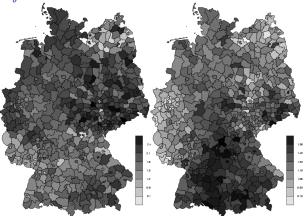


Examples of latent Gaussian models: 2D



Disease mapping: Poisson data

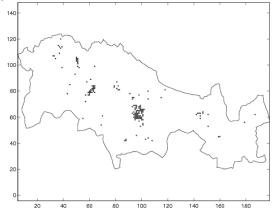
Examples of latent Gaussian models: 2D



Joint disease mapping: Poisson data

EXAMPLES: 2D

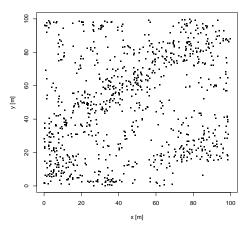
Examples of latent Gaussian models: 2D



Spatial GLM with Binomial data

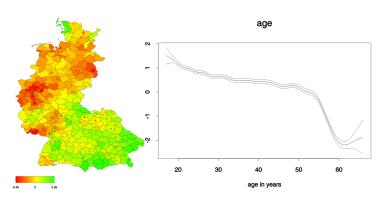
L_{EXAMPLES: 2D}

Examples of latent Gaussian models: 2D



Log-Gaussian Cox-process; Oaks-data

$Examples \ \ of \ latent \ \ Gaussian \ \ models: \ 2D +$



Spatial logit-model with semiparametric covariates

Tasks

Compute from

$$\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y}) \propto \pi(\boldsymbol{\theta}) \ \pi(\mathbf{x} \mid \boldsymbol{\theta}) \prod_{i \in \mathcal{I}} \pi(y_i \mid x_i)$$

the posterior marginals:

$$\pi(x_i \mid \mathbf{y})$$
, for some or all i

and/or

$$\pi(\theta_i \mid \mathbf{y}),$$
 for some or all i

Latent Gaussian models: Characteristic features

UR APPROACH

Our approach: Approximate Bayesian Inference

- Can we compute (approximate) marginals directly without using MCMC?
- YES!
- Gain
 - Huge speedup & accuracy
 - The ability to treat latent Gaussian models properly ;-)

Latent Gaussian models: Characteristic features

UR APPROACH

Our approach: Approximate Bayesian Inference

- Can we compute (approximate) marginals directly without using MCMC?
- YES!
- Gain
 - Huge speedup & accuracy
 - The ability to treat latent Gaussian models properly ;-)

UR APPROACH

Our approach: Approximate Bayesian Inference

- Can we compute (approximate) marginals directly without using MCMC?
- YES!
- Gain
 - Huge speedup & accuracy
 - The ability to treat latent Gaussian models properly ;-)

Main ideas (I)

Main ideas are simple and based on the identity

$$\pi(z) = rac{\pi(x,z)}{\pi(x|z)}$$
 leading to $\widetilde{\pi}(z) = rac{\pi(x,z)}{\widetilde{\pi}(x|z)}$

When $\widetilde{\pi}(x|z)$ is the Gaussian-approximation, this is the Laplace-approximation.

Main ideas (I)

Main ideas are simple and based on the identity

$$\pi(z) = \frac{\pi(x,z)}{\pi(x|z)}$$
 leading to $\widetilde{\pi}(z) = \frac{\pi(x,z)}{\widetilde{\pi}(x|z)}$

When $\widetilde{\pi}(x|z)$ is the Gaussian-approximation, this is the Laplace-approximation.

LMAIN IDEAS

Main ideas (II)

Construct the approximations to

- 1. $\pi(\theta|\mathbf{y})$
- 2. $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

then we integrate

$$\pi(x_i|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \; \pi(x_i|\boldsymbol{\theta},\mathbf{y}) \; d\boldsymbol{\theta}$$

$$\pi(\theta_j|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \; d\theta_{-j}$$

LMAIN IDEAS

Main ideas (II)

Construct the approximations to

- 1. $\pi(\theta|\mathbf{y})$
- 2. $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

then we integrate

$$\pi(x_i|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \ \pi(x_i|\boldsymbol{\theta},\mathbf{y}) \ d\boldsymbol{\theta}$$

$$\pi(\theta_j|\mathbf{y}) = \int \pi(\theta|\mathbf{y}) d\theta_{-j}$$

Main ideas (II)

Construct the approximations to

- 1. $\pi(\boldsymbol{\theta}|\mathbf{y})$
- 2. $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

then we integrate

$$\pi(x_i|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \; \pi(x_i|\boldsymbol{\theta},\mathbf{y}) \; d\boldsymbol{\theta}$$

$$\pi(\theta_j|\mathbf{y}) = \int \pi(\boldsymbol{\theta}|\mathbf{y}) \; d\theta_{-j}$$

GMRFs: def

A Gaussian Markov random field (GMRF), $\mathbf{x} = (x_1, \dots, x_n)^T$, is a normal distributed random vector with additional Markov properties

$$x_i \perp x_j \mid \mathbf{x}_{-ij} \quad \Longleftrightarrow \quad Q_{ij} = 0$$

where **Q** is the precision matrix (inverse covariance)

Sparse matrices gives fast computations!

$The\ GMRF-approximation$

$$\pi(\mathbf{x} \mid \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} + \sum_i \log \pi(y_i|x_i)\right)$$

$$\approx \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T(\mathbf{Q} + \operatorname{diag}(c_i))(\mathbf{x} - \boldsymbol{\mu})\right) = \widetilde{\pi}(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$$

Constructed as follows:

- Locate the mode x*
- Expand to second order

Markov and computational properties are preserved

$The \ GMRF-approximation$

$$\pi(\mathbf{x} \mid \mathbf{y}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{T}\mathbf{Q}\mathbf{x} + \sum_{i} \log \pi(y_{i}|x_{i})\right)$$

$$\approx \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{T}(\mathbf{Q} + \operatorname{diag}(c_{i}))(\mathbf{x} - \boldsymbol{\mu})\right) = \widetilde{\pi}(\mathbf{x}|\boldsymbol{\theta}, \mathbf{y})$$

Constructed as follows:

- Locate the mode x*
- Expand to second order

Markov and computational properties are preserved

Part I

Some more background: The Laplace approximation

Outline I

Background: The Laplace approximation

The Laplace-approximation for $\pi(\boldsymbol{\theta}|\mathbf{y})$

The Laplace-approximation for $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

The Integrated nested Laplace-approximation (INLA)

Summary

Assessing the error

Examples

Stochastic volatility

Longitudinal mixed effect model

Log-Gaussian Cox process

Extensions

Model choice

Automatic detection of "surprising" observations

Summary and discussion

Outline II

High(er) number of hyperparameters Parallel computing using OpenMP Spatial GLMs

Compute and approximation to the integral

$$\int \exp(ng(x)) \ dx$$

where n is the parameter going to ∞ .

Let x_0 be the mode of g(x) and assume $g(x_0) = 0$:

$$g(x) = \frac{1}{2}g''(x_0)(x - x_0)^2 + \cdots$$

Compute and approximation to the integral

$$\int \exp(ng(x)) \ dx$$

where n is the parameter going to ∞ .

Let x_0 be the mode of g(x) and assume $g(x_0) = 0$:

$$g(x) = \frac{1}{2}g''(x_0)(x-x_0)^2 + \cdots$$

$$\int \exp(ng(x)) \ dx = \sqrt{\frac{2\pi}{n(-g''(x_0))}} + \cdots$$

- As $n \to \infty$, then the integrand gets more and more peaked.
- Error should tends to zero as $n \to \infty$
- Detailed analysis gives

relative error(
$$n$$
) = 1 + $\mathcal{O}(1/n)$

$$\int \exp(ng(x)) \ dx = \sqrt{\frac{2\pi}{n(-g''(x_0))}} + \cdots$$

- As $n \to \infty$, then the integrand gets more and more peaked.
- Error should tends to zero as $n \to \infty$
- Detailed analysis gives

relative error(
$$n$$
) = $1 + \mathcal{O}(1/n)$

$$\int \exp(ng(x)) \ dx = \sqrt{\frac{2\pi}{n(-g''(x_0))}} + \cdots$$

- As $n \to \infty$, then the integrand gets more and more peaked.
- Error should tends to zero as $n \to \infty$
- Detailed analysis gives

relative error(
$$n$$
) = 1 + $\mathcal{O}(1/n)$

$$\int \exp(ng(x)) \ dx = \sqrt{\frac{2\pi}{n(-g''(x_0))}} + \cdots$$

- As $n \to \infty$, then the integrand gets more and more peaked.
- Error should tends to zero as $n \to \infty$
- Detailed analysis gives

relative error(
$$n$$
) = $1 + \mathcal{O}(1/n)$

Extension I

$$g_n(x) = \frac{1}{n} \sum_{i=1}^n g_i(x)$$

then the mode x_0 depends on n as well.

Background: The Laplace approximation

Extension II

$$\int \exp(ng(\mathbf{x})) \ d\mathbf{x}$$

and x is multivariate, then

$$\int \exp(ng(\mathbf{x})) d\mathbf{x} = \sqrt{\frac{(2\pi)^n}{n|-\mathbf{H}|}}$$

where H is the hessian (matrix) at the mode

$$H_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} g(\mathbf{x}) \bigg|_{\mathbf{x} = \mathbf{x}_i}$$

Extension II

$$\int \exp(ng(\mathbf{x})) \ d\mathbf{x}$$

and x is multivariate, then

$$\int \exp(ng(\mathbf{x})) \ d\mathbf{x} = \sqrt{\frac{(2\pi)^n}{n|-\mathbf{H}|}}$$

where **H** is the hessian (matrix) at the mode

$$H_{ij} = \frac{\partial^2}{\partial x_i \partial x_j} g(\mathbf{x}) \bigg|_{\mathbf{x} = \mathbf{x}_0}$$

- Our main issue is to compute marginals
- We can use the Laplace-approximation for this issue as well
- A more "statistical" derivation might be appropriate

- Our main issue is to compute marginals
- We can use the Laplace-approximation for this issue as well
- A more "statistical" derivation might be appropriate

- Our main issue is to compute marginals
- We can use the Laplace-approximation for this issue as well
- A more "statistical" derivation might be appropriate

Consider the general problem

- θ is hyper-parameter with prior $\pi(\theta)$
- x is latent with density $\pi(x|\theta)$
- y is observed with likelihood $\pi(y|x)$

then

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

for any x!

Consider the general problem

- θ is hyper-parameter with prior $\pi(\theta)$
- x is latent with density $\pi(x|\theta)$
- y is observed with likelihood $\pi(y|x)$

then

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

for any x!

Consider the general problem

- θ is hyper-parameter with prior $\pi(\theta)$
- x is latent with density $\pi(x|\theta)$
- y is observed with likelihood $\pi(y|x)$

then

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

for any x!

Further,

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

$$\propto \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi(x|\theta,y)}$$

$$\approx \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi_G(x|\theta,y)}\Big|_{x=x^*(\theta)}$$

where $\pi_G(x|\theta,y)$ is the Gaussian approximation of $\pi(x|\theta,y)$ and $x^*(\theta)$ is the mode.

Further,

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

$$\propto \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi(x|\theta,y)}$$

$$\approx \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi_G(x|\theta,y)}\Big|_{x=x^*(\theta)}$$

where $\pi_G(x|\theta,y)$ is the Gaussian approximation of $\pi(x|\theta,y)$ and $x^*(\theta)$ is the mode.

Further,

$$\pi(\theta|y) = \frac{\pi(x,\theta|y)}{\pi(x|\theta,y)}$$

$$\propto \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi(x|\theta,y)}$$

$$\approx \frac{\pi(\theta) \pi(x|\theta) \pi(y|x)}{\pi_G(x|\theta,y)}\Big|_{x=x^*(\theta)}$$

where $\pi_G(x|\theta,y)$ is the Gaussian approximation of $\pi(x|\theta,y)$ and $x^*(\theta)$ is the mode.

Error:

With n repeated measurements of the same x, then the error is

$$\widetilde{\pi}(\theta|y) = \pi(\theta|y)(1 + \mathcal{O}(n^{-3/2}))$$

after renormalisation.

Relative error is a very nice property!

Error:

With n repeated measurements of the same x, then the error is

$$\widetilde{\pi}(\theta|y) = \pi(\theta|y)(1 + \mathcal{O}(n^{-3/2}))$$

after renormalisation.

Relative error is a very nice property!

$The \ Laplace \ approximation$

The Laplace approximation for $\pi(\boldsymbol{\theta}|\mathbf{y})$ is

$$\pi(\boldsymbol{\theta} \mid \mathbf{y}) = \frac{\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y})}{\pi(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta})} \quad (\text{any } \mathbf{x})$$

$$\approx \frac{\pi(\mathbf{x}, \boldsymbol{\theta} \mid \mathbf{y})}{\widetilde{\pi}(\mathbf{x} \mid \mathbf{y}, \boldsymbol{\theta})} \bigg|_{\mathbf{x} = \mathbf{x}^*(\boldsymbol{\theta})} = \widetilde{\pi}(\boldsymbol{\theta} \mid \mathbf{y}) \quad (1)$$

Remarks

The Laplace approximation

$$\widetilde{\pi}(oldsymbol{ heta}|\mathbf{y})$$

turn out to be accurate: $\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}$ appears almost Gaussian in most cases, as

- x is a priori Gaussian.
- y is typically not very informative.
- Observational model is usually 'well-behaved'.

Remarks

The Laplace approximation

$$\widetilde{\pi}(oldsymbol{ heta}|\mathbf{y})$$

turn out to be accurate: $\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}$ appears almost Gaussian in most cases, as

- x is a priori Gaussian.
- y is typically not very informative.
- Observational model is usually 'well-behaved'.

The Laplace-approximation for $\pi(\theta|\mathbf{y})$

Remarks

The Laplace approximation

$$\widetilde{\pi}(oldsymbol{ heta}|\mathbf{y})$$

turn out to be accurate: $\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}$ appears almost Gaussian in most cases, as

- x is a priori Gaussian.
- y is typically not very informative.
- Observational model is usually 'well-behaved'.

Remarks

The Laplace approximation

$$\widetilde{\pi}(oldsymbol{ heta}|\mathbf{y})$$

turn out to be accurate: $\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}$ appears almost Gaussian in most cases, as

- x is a priori Gaussian.
- y is typically not very informative.
- Observational model is usually 'well-behaved'.

Remarks

The Laplace approximation

$$\widetilde{\pi}(oldsymbol{ heta}|\mathbf{y})$$

turn out to be accurate: $\mathbf{x}|\mathbf{y}, \boldsymbol{\theta}$ appears almost Gaussian in most cases, as

- x is a priori Gaussian.
- y is typically not very informative.
- Observational model is usually 'well-behaved'.

Approximating $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$

This task is more challenging, since

- dimension of x, n is large
- and there are potential n marginals to compute, or at least $\mathcal{O}(n)$.

An obvious simple and fast alternative, is to use the GMRF-approximation

$$\widetilde{\pi}(x_i|\boldsymbol{\theta}, \mathbf{y}) = \mathcal{N}(x_i; \ \mu(\boldsymbol{\theta}), \sigma^2(\boldsymbol{\theta}))$$

Approximating $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$

This task is more challenging, since

- dimension of x, n is large
- and there are potential n marginals to compute, or at least $\mathcal{O}(n)$.

An obvious simple and fast alternative, is to use the GMRF-approximation

$$\widetilde{\pi}(x_i|\boldsymbol{\theta}, \mathbf{y}) = \mathcal{N}(x_i; \ \mu(\boldsymbol{\theta}), \sigma^2(\boldsymbol{\theta}))$$

Approximating $\pi(x_i|\mathbf{y},\boldsymbol{\theta})$

This task is more challenging, since

- dimension of x, n is large
- and there are potential n marginals to compute, or at least $\mathcal{O}(n)$.

An obvious simple and fast alternative, is to use the GMRF-approximation

$$\widetilde{\pi}(x_i|\boldsymbol{\theta},\mathbf{y}) = \mathcal{N}(x_i; \ \mu(\boldsymbol{\theta}), \sigma^2(\boldsymbol{\theta}))$$

Laplace approximation of $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

• The Laplace approximation:

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \boldsymbol{\theta}) \approx \frac{\pi(\mathbf{x}, \boldsymbol{\theta} | \mathbf{y})}{\widetilde{\pi}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \boldsymbol{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}_{-i}^*(\mathbf{x}_i, \boldsymbol{\theta})}$$

- Again, approximation is very good, as $\mathbf{x}_{-i}|\mathbf{x}_i, \theta$ is 'almost Gaussian',
- but it is expensive. In order to get the *n* marginals:
 - perform n optimisations, and
 - *n* factorisations of $n-1 \times n-1$ matrices.

Can be solved.

Laplace approximation of $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

• The Laplace approximation:

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \boldsymbol{\theta}) \approx \frac{\pi(\mathbf{x}, \boldsymbol{\theta} | \mathbf{y})}{\widetilde{\pi}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \boldsymbol{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}^*_{-i}(\mathbf{x}_i, \boldsymbol{\theta})}$$

- Again, approximation is very good, as $\mathbf{x}_{-i}|\mathbf{x}_i, \theta$ is 'almost Gaussian',
- but it is expensive. In order to get the *n* marginals:
 - perform n optimisations, and
 - *n* factorisations of $n-1 \times n-1$ matrices.

Can be solved.

Laplace approximation of $\pi(x_i|\boldsymbol{\theta},\mathbf{y})$

The Laplace approximation:

$$\widetilde{\pi}(\mathbf{x}_i \mid \mathbf{y}, \boldsymbol{\theta}) \approx \frac{\pi(\mathbf{x}, \boldsymbol{\theta} | \mathbf{y})}{\widetilde{\pi}(\mathbf{x}_{-i} | \mathbf{x}_i, \mathbf{y}, \boldsymbol{\theta})} \bigg|_{\mathbf{x}_{-i} = \mathbf{x}_{-i}^*(\mathbf{x}_i, \boldsymbol{\theta})}$$

- Again, approximation is very good, as $\mathbf{x}_{-i}|\mathbf{x}_i, \theta$ is 'almost Gaussian',
- but it is expensive. In order to get the *n* marginals:
 - perform n optimisations, and
 - *n* factorisations of $n-1 \times n-1$ matrices.

Can be solved.

An series expansion of the LA for $\pi(x_i|\theta, \mathbf{y})$:

- computational much faster: $O(n \log n)$ for each i
- correct the Gaussian approximation for error in shift and skewness

$$\log \widetilde{\pi}(x_i|\boldsymbol{\theta},\mathbf{y}) = -\frac{1}{2}x_i^2 + bx_i + \frac{1}{6}dx_i^3 + \cdots$$

Fit a skew-Normal density

$$2\phi(x)\Phi(ax)$$

An series expansion of the LA for $\pi(x_i|\theta, \mathbf{y})$:

- computational much faster: $O(n \log n)$ for each i
- correct the Gaussian approximation for error in shift and skewness

$$\log \widetilde{\pi}(x_i|\boldsymbol{\theta},\mathbf{y}) = -\frac{1}{2}x_i^2 + bx_i + \frac{1}{6}dx_i^3 + \cdots$$

Fit a skew-Normal density

$$2\phi(x)\Phi(ax)$$

An series expansion of the LA for $\pi(x_i|\theta, \mathbf{y})$:

- computational much faster: $O(n \log n)$ for each i
- correct the Gaussian approximation for error in shift and skewness

$$\log \widetilde{\pi}(x_i|\boldsymbol{\theta},\mathbf{y}) = -\frac{1}{2}x_i^2 + bx_i + \frac{1}{6}dx_i^3 + \cdots$$

Fit a skew-Normal density

$$2\phi(x)\Phi(ax)$$

An series expansion of the LA for $\pi(x_i|\theta, \mathbf{y})$:

- computational much faster: $O(n \log n)$ for each i
- correct the Gaussian approximation for error in shift and skewness

$$\log \widetilde{\pi}(x_i|\boldsymbol{\theta},\mathbf{y}) = -\frac{1}{2}x_i^2 + bx_i + \frac{1}{6}dx_i^3 + \cdots$$

• Fit a skew-Normal density

$$2\phi(x)\Phi(ax)$$

The integrated nested Laplace approximation (INLA) I Step I Explore $\tilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$

- Locate the mode
- Use the Hessian to construct new variables
- Grid-search
- Can be case-specific

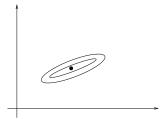
SUMMARY

 \sqsubseteq The Integrated nested Laplace-approximation (INLA)

The integrated nested Laplace approximation (INLA) I

Step~I~ Explore $\widetilde{\pi}(m{ heta}|\mathbf{y})$

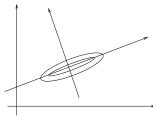
- Locate the mode
- Use the Hessian to construct new variables
- Grid-search
- Can be case-specific



The integrated nested Laplace approximation (INLA) I

Step I Explore $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$

- Locate the mode
- Use the Hessian to construct new variables
- Grid-search
- Can be case-specific



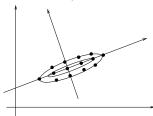
THE INTEGRATED NESTED LAPLACE-APPROXIMATION (INLA)

Summary

The integrated nested Laplace approximation (INLA) I

Step I Explore $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$

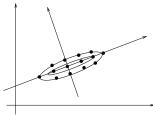
- Locate the mode
- Use the Hessian to construct new variables
- Grid-search
- Can be case-specific



The integrated nested Laplace approximation (INLA) I

Step I Explore $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$

- Locate the mode
- Use the Hessian to construct new variables
- Grid-search
- Can be case-specific



SUMMARY

The integrated nested Laplace approximation (INLA) II

Step II For each θ_i

- For each i, evaluate the Laplace approximation for selected values of xi
- Build a Skew-Normal or log-spline corrected Gaussian

$$\mathcal{N}(x_i; \ \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent the conditional marginal density.

Summary

The integrated nested Laplace approximation (INLA) II

Step~II~ For each $oldsymbol{ heta}_{j}$

- For each i, evaluate the Laplace approximation for selected values of xi
- Build a Skew-Normal or log-spline corrected Gaussian

$$\mathcal{N}(x_i; \ \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent the conditional marginal density.

The integrated nested Laplace approximation (INLA) II

Step~II~ For each $oldsymbol{ heta}_j$

- For each i, evaluate the Laplace approximation for selected values of x_i
- Build a Skew-Normal or log-spline corrected Gaussian

$$\mathcal{N}(x_i; \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent the conditional marginal density.

Summary

The integrated nested Laplace approximation (INLA) III

Step III Sum out θ_i

• For each i, sum out θ

$$\widetilde{\pi}(\mathsf{x}_i \mid \mathsf{y}) \propto \sum_j \widetilde{\pi}(\mathsf{x}_i \mid \mathsf{y}, \theta_j) \times \widetilde{\pi}(\theta_j \mid \mathsf{y})$$

Build a log-spline corrected Gaussian

$$\mathcal{N}(x_i; \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent $\widetilde{\pi}(x_i \mid \mathbf{y})$.

The integrated nested Laplace approximation (INLA) III

Step III Sum out θ_i

• For each i, sum out θ

$$\widetilde{\pi}(x_i \mid \mathbf{y}) \propto \sum_j \widetilde{\pi}(x_i \mid \mathbf{y}, \boldsymbol{\theta}_j) \times \widetilde{\pi}(\boldsymbol{\theta}_j \mid \mathbf{y})$$

• Build a log-spline corrected Gaussian

$$\mathcal{N}(x_i; \ \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent $\widetilde{\pi}(x_i \mid \mathbf{y})$.

The integrated nested Laplace approximation (INLA) III

Step III Sum out θ_i

• For each i, sum out θ

$$\widetilde{\pi}(x_i \mid \mathbf{y}) \propto \sum_j \widetilde{\pi}(x_i \mid \mathbf{y}, \boldsymbol{\theta}_j) \times \widetilde{\pi}(\boldsymbol{\theta}_j \mid \mathbf{y})$$

• Build a log-spline corrected Gaussian

$$\mathcal{N}(x_i; \mu_i, \sigma_i^2) \times \exp(\text{spline})$$

to represent $\widetilde{\pi}(x_i \mid \mathbf{y})$.

└─ THE INTEGRATED NESTED LAPLACE-APPROXIMATION (INLA) └─ SUMMARY

Computing posterior marginals for θ_i (I)

Main idea

- Use the integration-points and build an interpolant
- Use numerical integration on that interpolant

Main idea

- Use the integration-points and build an interpolant
- Use numerical integration on that interpolant

Practical approach (high accuracy)

- Rerun using a fine integration grid
- Possibly with no rotation
- Just sum up at grid points, then interpolate

Practical approach (high accuracy)

- Rerun using a fine integration grid
- Possibly with no rotation
- Just sum up at grid points, then interpolate

Practical approach (high accuracy)

- Rerun using a fine integration grid
- Possibly with no rotation
- Just sum up at grid points, then interpolate

Practical approach (lower accuracy)

- Use the Gaussian approximation at the mode $heta^*$
- ...BUT, adjust the standard deviation in each direction
- Then use numerical integration

Practical approach (lower accuracy)

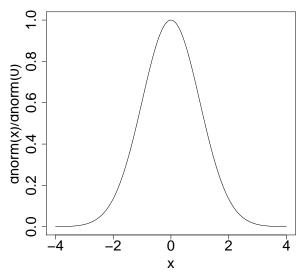
- Use the Gaussian approximation at the mode $heta^*$
- ...BUT, adjust the standard deviation in each direction
- Then use numerical integration

Practical approach (lower accuracy)

- Use the Gaussian approximation at the mode $heta^*$
- ...BUT, adjust the standard deviation in each direction
- Then use numerical integration

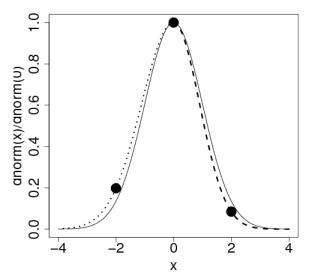
THE INTEGRATED NESTED LAPLACE-APPROXIMATION (INLA)

 $\mathrel{\ \ \, \sqcup}_{\text{SUMMARY}}$



The Integrated nested Laplace-approximation (INLA)

 $\mathrel{\ \ \, \sqcup}_{\text{SUMMARY}}$



How can we assess the error in the approximations?

Tool 1: Compare a sequence of improved approximations

- 1. Gaussian approximation
- 2. Simplified Laplace
- 3. Laplace

Assessing the error

How can we assess the error in the approximations?

Tool 2: Estimate the error using Monte Carlo

$$\left\{\frac{\widetilde{\pi}_{\textit{u}}(\boldsymbol{\theta}\mid\mathbf{y})}{\pi(\boldsymbol{\theta}\mid\mathbf{y})}\right\}^{-1} \propto \mathsf{E}_{\widetilde{\pi}_{\mathsf{G}}}\left[\mathsf{exp}\left\{r(\mathbf{x};\boldsymbol{\theta},\mathbf{y})\right\}\right]$$

where r() is the sum of the log-likelihood minus the second order Taylor expansion.

Assessing the error

How can we assess the error in the approximations?

Tool 3: Estimate the "effective" number of parameters as defined in the *Deviance Information Criteria*:

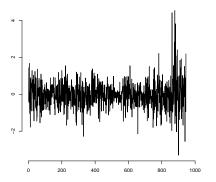
$$p_{\mathsf{D}}(\boldsymbol{\theta}) = \overline{D}(\mathbf{x}; \boldsymbol{\theta}) - D(\overline{\mathbf{x}}; \boldsymbol{\theta})$$

and compare this with the number of observations.

Low ratio is good.

This criteria has theoretical justification.

$Stochastic\ Volatility\ model$



Log of the daily difference of the pound-dollar exchange rate from October 1st, 1981, to June 28th, 1985.

$Stochastic\ Volatility\ model$

Simple model

$$x_t \mid x_1, \ldots, x_{t-1}, \tau, \phi \sim \mathcal{N}(\phi x_{t-1}, 1/\tau)$$

where $|\phi| < 1$ to ensure a stationary process.

Observations are taken to be

$$y_t \mid x_1, \ldots, x_t, \mu \sim \mathcal{N}(0, \exp(\mu + x_t))$$

$Stochastic\ Volatility\ model$

Simple model

$$x_t \mid x_1, \ldots, x_{t-1}, \tau, \phi \sim \mathcal{N}(\phi x_{t-1}, 1/\tau)$$

where $|\phi| < 1$ to ensure a stationary process.

Observations are taken to be

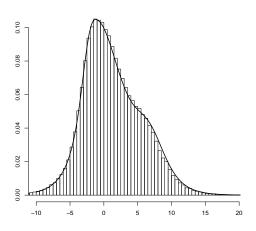
$$y_t \mid x_1, \ldots, x_t, \mu \sim \mathcal{N}(0, \exp(\mu + x_t))$$

LSTOCHASTIC VOLATILITY

Results

Using just the first 50 data-points only, which makes the problem much harder.

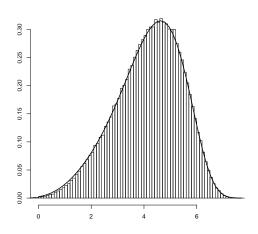
Results



$$u = \mathsf{logit}(2\phi - 1)$$

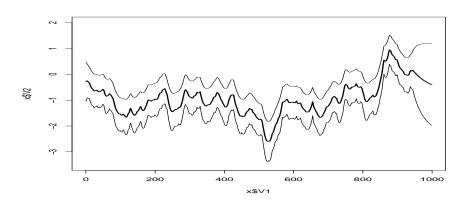
L_{STOCHASTIC} VOLATILITY

Results

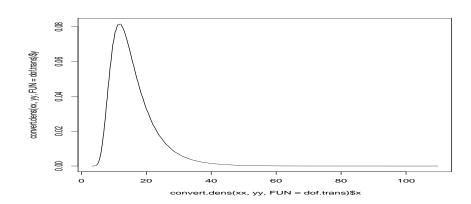


 $\log(\kappa_{\rm x})$

Using the full dataset



Student- $t_{ u}$



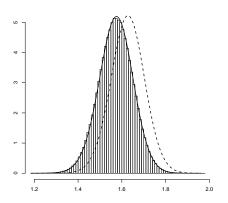
Posterior marginal for ν .

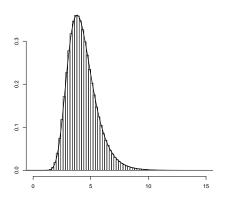
EXAMPLES

LONGITUDINAL MIXED EFFECT MODEL

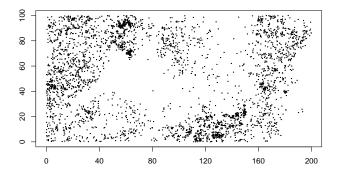
Patient	У1	У2	УЗ	У4	Trt	Base	Age
1 2 3 4	5 3 2 4	3 5 4 4	3 3 0 1	3 3 5 4	0 0 0 0	11 11 6 8	31 30 25 36
 8 9	40 5	20 6	21 6	12 5	0	52 12	42 37
 59	1	4	3	2	1	12	37

$$\begin{split} y_{jk} &\sim \mathsf{Poisson}(m_{jk}) \\ &\log m_{jk} = a_0 + a_{\mathsf{Base}} \log(\mathsf{Base}_{\mathsf{j}} / 4) + a_{\mathsf{Trt}} \mathsf{Trt}_{\mathsf{j}} + a_{\mathsf{BT}} \mathsf{Trt}_{\mathsf{j}} \log(\mathsf{Base}_{\mathsf{j}} / 4) + \\ &a_{\mathsf{Age}} \, \mathsf{Age}_{\mathsf{j}} + a_{\mathsf{V4}} \mathsf{V}_{\mathsf{4}} + \mathsf{b1}_{\mathsf{j}} + \mathsf{b}_{\mathsf{jk}} \\ &\mathsf{b1}_{\mathsf{j}} \sim \, \mathsf{Normal}(0, \mathsf{t_{b1}}) \\ \\ &b_{\mathsf{jk}} \sim \, \mathsf{Normal}(0, \mathsf{t_{b}}) \end{split}$$



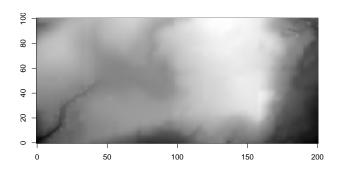


$Log ext{-}Gaussian\ Cox\ process$



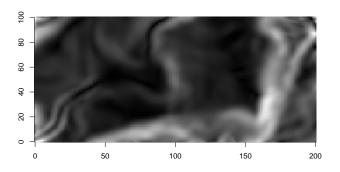
Locations of trees of a particular type: Data comes from a 50-hectare permanent tree plot which was established in 1980 in the tropical moist forest of Barro Colorado Island in Gatun Lake in central Panama.

Log-Gaussian Cox process



Covariate: altitude

Log-Gaussian Cox process



Covariate: norm of gradient

Model

Model for log-density at each "pixel" in a 200×100 lattice

$$\eta_i = \beta_0 + \beta_1 c_{1i} + \beta_2 c_{2i} + u_i + v_i, \qquad \sum_i u_i = 0$$

The spatial term is an IGMRF

$$\mathsf{E}(u_i \mid \mathbf{u}_{-i}) = \frac{1}{20} \left(8 \overset{\circ \circ \circ \circ \circ}{\overset{\circ \circ \circ \circ \circ}{\circ \circ \circ \circ}} - 2 \overset{\circ \circ \circ \circ \circ}{\overset{\circ \circ \circ \circ \circ}{\circ \circ \circ \circ}} - 1 \overset{\circ \circ \circ \circ \circ}{\overset{\circ \circ \circ \circ \circ}{\circ \circ \circ \circ}} \right)$$

$$\mathsf{Prec}(u_i \mid \mathbf{u}_{-i}) = 20\kappa_{\mathbf{u}}$$

Model

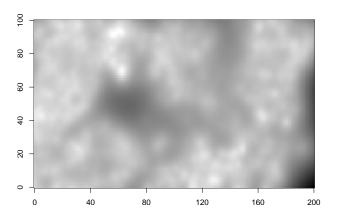
Model for log-density at each "pixel" in a 200×100 lattice

$$\eta_i = \beta_0 + \beta_1 c_{1i} + \beta_2 c_{2i} + u_i + v_i, \qquad \sum_i u_i = 0$$

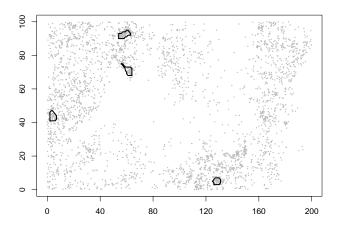
The spatial term is an IGMRF

$$\mathsf{E}(u_i \mid \mathbf{u}_{-i}) = \frac{1}{20} \left(8 \overset{\circ \circ \circ \circ \circ}{\circ \circ \circ \circ} - 2 \overset{\circ \circ \circ \circ \circ}{\circ \circ \circ} - 1 \overset{\circ \circ \circ \circ \circ}{\circ \circ \circ} - 1 \overset{\circ \circ \circ \circ \circ}{\circ \circ \circ} \right)$$

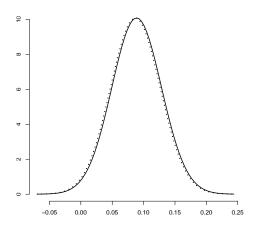
$$Prec(u_i \mid \mathbf{u}_{-i}) = 20\kappa_{\mathbf{u}}$$



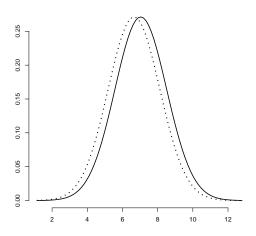
The posterior expectation of the spatial field



Locations with high KLD



Effect of altitude



Effect of norm of the gradient

Extensions

- Model choice/selection
- Automatic detection of "surprising" observations

Will not discuss

- High(er) number of hyperparameters
- Parallel computing using OpenMP
- Sensitivity Analysis

Extensions

- Model choice/selection
- Automatic detection of "surprising" observations

Will not discuss

- High(er) number of hyperparameters
- Parallel computing using OpenMP
- Sensitivity Analysis

Extensions

- Model choice/selection
- Automatic detection of "surprising" observations

Will not discuss

- High(er) number of hyperparameters
- Parallel computing using OpenMP
- Sensitivity Analysis

Model choice

Chose/compare various model is important but difficult

- Bayes factors (general available)
- Deviance information criterion (DIC) (hierarchical models)

MODEL CHOICE

Marginal likelihood

Marginal likelihood is the normalising constant for $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$,

$$\widetilde{\pi}(\mathbf{y}) = \int \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x},\boldsymbol{\theta})}{\widetilde{\pi}_{\mathsf{G}}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})} \bigg|_{\mathbf{x}=\mathbf{x}^{\star}(\boldsymbol{\theta})} d\boldsymbol{\theta}.$$
(2)

I many hierarchical GMRF models the prior is intrinsic/improper, so this is difficult to use.

MODEL CHOICE

Marginal likelihood

Marginal likelihood is the normalising constant for $\widetilde{\pi}(\boldsymbol{\theta}|\mathbf{y})$,

$$\widetilde{\pi}(\mathbf{y}) = \int \frac{\pi(\boldsymbol{\theta})\pi(\mathbf{x}|\boldsymbol{\theta})\pi(\mathbf{y}|\mathbf{x},\boldsymbol{\theta})}{\widetilde{\pi}_{\mathsf{G}}(\mathbf{x}|\boldsymbol{\theta},\mathbf{y})} \bigg|_{\mathbf{x}=\mathbf{x}^{\star}(\boldsymbol{\theta})} d\boldsymbol{\theta}.$$
(2)

I many hierarchical GMRF models the prior is intrinsic/improper, so this is difficult to use.

Deviance Information Criteria

Based on the deviance

$$D(\mathbf{x};\boldsymbol{\theta}) = -2\sum_{i}\log(y_i\mid x_i,\boldsymbol{\theta})$$

and

$$DIC = 2 \times Mean(D(\mathbf{x}; \boldsymbol{\theta})) - D(Mean(\mathbf{x}); \boldsymbol{\theta}^*)$$

This is quite easy to compute

Bayesian Cross-validation

Easy to compute using the INLA-approach

$$\pi(y_i \mid \mathbf{y}_{-i}) = \int_{\boldsymbol{\theta}} \left\{ \int_{x_i} \pi(y_i \mid x_i, \boldsymbol{\theta}) \ \pi(x_i \mid \mathbf{y}_{-i}, \boldsymbol{\theta}) \ dx_i \ \right\} \pi(\boldsymbol{\theta} \mid \mathbf{y}_{-i}) \ d\boldsymbol{\theta}$$

where

$$\pi(\mathsf{x}_i \mid \mathsf{y}_{-i}, \boldsymbol{\theta}) \propto \frac{\pi(\mathsf{x}_i | \mathsf{y}, \boldsymbol{\theta})}{\pi(\mathsf{y}_i | \mathsf{x}_i, \boldsymbol{\theta})}$$

Require a one-dimensional integral for each i and θ .

Automatic detection of "surprising" observations

Compute

$$\mathsf{Prob}(y_i^{\mathsf{new}} \leq y_i \mid \mathbf{y}_{-i})$$

Look for unusual large or small values

Summary and discussion

- Latent Gaussian models are an important class of models with a wide range of applications!
- The integrated nested Laplace-approximations works extremely well, way beyond my expectations!!!
 - Obtain in practice "exact" results
 - Relative error only
 - Computationally FAST even for large n
 - Take advantage of multicore architecture using OpenMP
- Extensions
 - Compare models (DIC/Bayes factors)
 - Cross-validation and "surprising" observations
 - High(er) number of hyperparameters
 - Sensitivity analysis

Summary and discussion

- Latent Gaussian models are an important class of models with a wide range of applications!
- The integrated nested Laplace-approximations works extremely well, way beyond my expectations!!!
 - Obtain in practice "exact" results
 - Relative error only
 - Computationally FAST even for large n
 - Take advantage of multicore architecture using OpenMP
- Extensions
 - Compare models (DIC/Bayes factors)
 - Cross-validation and "surprising" observations
 - High(er) number of hyperparameters
 - Sensitivity analysis

Summary and discussion

- Latent Gaussian models are an important class of models with a wide range of applications!
- The integrated nested Laplace-approximations works extremely well, way beyond my expectations!!!
 - Obtain in practice "exact" results
 - Relative error only
 - Computationally FAST even for large n
 - Take advantage of multicore architecture using OpenMP
- Extensions
 - Compare models (DIC/Bayes factors)
 - Cross-validation and "surprising" observations
 - High(er) number of hyperparameters
 - Sensitivity analysis

High(er) number of hyperparameters

Numerical (grid) integration is costly and costs at least $3^{\dim(\theta)}$

Need another approach for "high-dimensional" hyperparameters.

HIGH(ER) NUMBER OF HYPERPARAMETERS

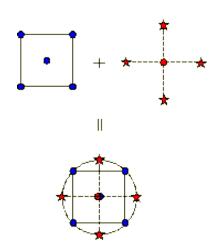
Borrow ideas from experimental design...

www.wikipedia.org: In statistics, a central composite design is an experimental design, useful in response surface methodology, for building a second order (quadratic) model for the response variable without needing to use a complete three-level factorial experiment.

 $\mathrel{\sqsubset}_{\operatorname{Bonus}}$

└─HIGH(ER) NUMBER OF HYPERPARAMETERS

Idea



$Number\ of\ integration\ points$

Dimension	#Int.pts CCD	#Int.pts GRID: 3 ^{dim}
2	9	8
3	15	27
4	25	64
5	27	125
6	45	216
7	79	343
8	81	512
9	147	729
10	149	1000
14	285	2744
18	549	5832
22	1069	10648

Experience so far

- Works quite well
- The integration problems is well-behaved.

Parallel computing using OpenMP

Why?

- Speed (primary)
- Ability to run larger models (secondary)

Why are so few doing this?

- (Seemingly) difficult
- Better to wait more than to code more
- Lack of local parallel machines.

Parallel computing using OpenMP

Why?

- Speed (primary)
- Ability to run larger models (secondary)

Why are so few doing this?

- (Seemingly) difficult
- Better to wait more than to code more
- Lack of local parallel machines.

The Gain/Pain-ratio is simply to low!

But there is hope, due to

- new trends in computing
- including parallel tools into mainstream compilers

The Gain/Pain-ratio is simply to low!

But there is hope, due to

- new trends in computing
- including parallel tools into mainstream compilers

Trends in computing

Once upon a time, chip makers made computer chips faster every year by increasing their processing speeds. But lately, the microprocessor industry has run into some fundamental limits to those speeds.

Trends in computing

The latest solution: Design chips with multiple processor cores.

Trends in computing

The result: Today's big-brained chips that can do more processing than ever before, if the software is modified to take advantage of their design.

Parallel machines are now everywhere...

Toshiba bærbar PC

Kraftig bærbar PC med Intel Pentium Dual-Core Prosessor og 160GB harddisk.

₩ Kjøp

Satellite A200-175 er en bærbar PC med 15.4" Widescreen, med et lekkert blått design med sølv og sort! Intel Dual Core prosessor, innebyggetWiFi (802.11b/g), webkamera og DVD-brenner.

Spesifikasjoner »

How to make use of multicore machines?

May 13, 2007: GCC 4.2 Release Series

OpenMP is now supported for the C, C++ and Fortran compilers.

OpenMP: coding

- Easy way to parallelize code
- Start with a serial version
- Parallel parts of the code when you have time
- Will still run on a serial machine
- Very little interference with the code itself, mainly compiler directives

OpenMP: running

- Just run the program and the run-time environment will take care of the rest.
- This includes how many CPU's that are used at the time.
- This will change during the execution of the program.

$Example\ from\ GMRFLib$

GMRFLib

- INLA-routines make quite good use of OpenMP
- and so does the inla-program.

Model

- Stationary Gaussian field on a torus
- non-Gaussian observations
- *n* is huge: $n = 512^2$ or $n = 1024^2$
- number of observations, m, is small, a few hundred.

- INLA, but the computational tools are now very different
 - Exploit the block Toeplitz structure using DFTs
 - and simply rank-*m* correct for the observations using soft constraints.

Model

- Stationary Gaussian field on a torus
- non-Gaussian observations
- *n* is huge: $n = 512^2$ or $n = 1024^2$
- number of observations, m, is small, a few hundred.

- INLA, but the computational tools are now very different
 - Exploit the block Toeplitz structure using DFTs
 - and simply rank-*m* correct for the observations using soft constraints.

Model

- Stationary Gaussian field on a torus
- non-Gaussian observations
- n is huge: $n = 512^2$ or $n = 1024^2$
- number of observations, *m*, is small, a few hundred.

- INLA, but the computational tools are now very different
 - Exploit the block Toeplitz structure using DFTs
 - and simply rank-*m* correct for the observations using soft constraints.

Model

- Stationary Gaussian field on a torus
- non-Gaussian observations
- n is huge: $n = 512^2$ or $n = 1024^2$
- number of observations, m, is small, a few hundred.

- INLA, but the computational tools are now very different
 - Exploit the block Toeplitz structure using DFTs
 - and simply rank-m correct for the observations using soft constraints.

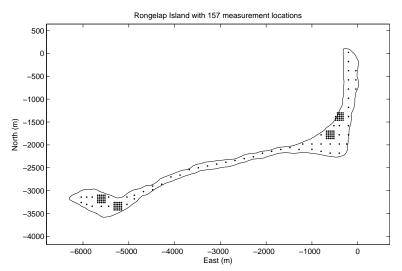
Model

- Stationary Gaussian field on a torus
- non-Gaussian observations
- n is huge: $n = 512^2$ or $n = 1024^2$
- number of observations, m, is small, a few hundred.

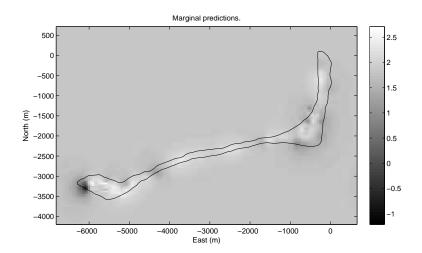
- INLA, but the computational tools are now very different
 - Exploit the block Toeplitz structure using DFTs
 - and simply rank-m correct for the observations using soft constraints.

SPATIAL GLMS

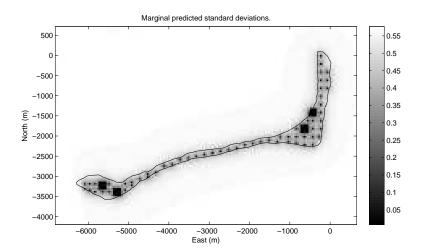
Example: Rongelap data



Example: Rongelap data, results



Example: Rongelap data, results



- Main interest is to predict unobserved sites
- Gaussian approximations seems sufficient
- they are $\mathcal{O}(m)$ -times faster to compute...
- Can also use GMRFs for large m using GMRF-proxies for Gaussian fields

- Main interest is to predict unobserved sites
- Gaussian approximations seems sufficient
- they are $\mathcal{O}(m)$ -times faster to compute...
- Can also use GMRFs for large m using GMRF-proxies for Gaussian fields

- Main interest is to predict unobserved sites
- Gaussian approximations seems sufficient
- they are $\mathcal{O}(m)$ -times faster to compute...
- Can also use GMRFs for large m using GMRF-proxies for Gaussian fields

- Main interest is to predict unobserved sites
- Gaussian approximations seems sufficient
- they are $\mathcal{O}(m)$ -times faster to compute...
- Can also use GMRFs for large m using GMRF-proxies for Gaussian fields