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Parametric and nonparametric 
b bili d l

• P: Model class + parameter value  data

probability models

P: Model class + parameter value  data

NP: Whole distribution  data
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Parametric and nonparametric 
b bili d l

• P: Test whether a parameter lies in a given region

probability models

P: Test whether a parameter lies in a given region
or

investigation of posterior distribution of the parameterg p p

NP: Test whether 2 distributions as a whole are equalNP: Test whether 2 distributions as a whole are equal 
(reference space necessary)

oror
Investigation of posterior distribution (continuously 
indexed family of neighbourhoods) of a distributiony g s) s
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Ref.: Lehmann 1986, 334-337; Brunner/Langer 1999, 32-33



Parametric and nonparametric 
b bili d l

• What does the Bayesian synthesis

probability models

What does the Bayesian synthesis

Prior function Likelihood

Posterior functionPosterior function

mean if spaces of whole distributions are investigated 
instead of a finite-dimensional parameter space?instead of a finite dimensional parameter space?

• In particular, how much “hidden information” is 
contained in an apparently uninformative prior 
di t ib ti l t d f i t t bilit ?
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distribution, selected for convenience or tractability?
Ref.: Berger, J.A.S.A. 2000, 1272 right



Prior distributions and prior 

• “Definition”: A stochastic process is an indexed family of

processes

Definition : A stochastic process is an indexed family of 
distributions over a sample space, whereby the indexing 
has to be “continuous” in a certain sense, or at least ,
“measurable”

• If the sample space has dimension > 1, the process is alsoIf the sample space has dimension  1, the process is also 
called a “random field”

Ref.: Møller/Waagepetersen 2004, 7-11
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Prior distributions and prior 

• A distribution of distributions can be considered as a

processes

A distribution of distributions can be considered as a 
stochastic process, whereby the index set is itself a 
distribution and “generates” a set of neighbourhoods g g
around a given distribution

• The given distribution, around which we want toThe given distribution, around which we want to 
construct the neighbourhoods, is defined on the 
partitions of the sample spacep p p

Ref.: Navarrete et al., Stat. Modelling 2008, 4
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Prior distributions and prior 

• The historically first process of this kind is the Dirichlet

processes

The historically first process of this kind is the Dirichlet 
process; for each partition, it assigns a Dirichlet 
distribution to the probabilities of each element of the p
partition

• We obtain a family of distributions around the givenWe obtain a family of distributions around the given 
distribution

• The family is conjugate to the given distribution samples• The family is conjugate to the given distribution, samples 
from the given distribution (also if independently 
censored) can be includeds )

• The distributions in the family are, with probability 1, 
discrete
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discrete 
Ref.: Ferguson, Ann. Stat. 1973, Gelfand et al. 2007



Prior distributions and prior 

• The Dirichlet process was applied successfully to the

processes

The Dirichlet process was applied successfully to the 
estimation of 1 survival curve with right-censoring

• A sharp prior distribution has to be given first around• A sharp prior distribution has to be given first, around 
which the family of distributions is centered

The relative weight of the given distribution relative to the• The relative weight of the given distribution, relative to the 
information provided by the data, is described by a non-
negative number cnegative number, c

• The Kaplan-Meier estimator can be seen as a limiting case 
if c = 0if c = 0
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Ref.: Suzarla/Van Ryzin, J.A.S.A. 1976



Prior distributions and prior 

The Polya tree is a special case of the Dirichlet process

processes

The Polya tree is a special case of the Dirichlet process 
whereby the partitions of the sample space are generated 
through recursive bisection; degenerate splits are g ; g p
possible. At each branching, the probabilities of the 2 
sub-sections are Beta-distributed.

• The Polya tree also needs a given sharp distribution to 
begin withg

• The Polya tree already allows a representation of the 
Kaplan-Meier curve, in the limiting case that the weight of p , g s g
the prior distribution becomes 0
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Ref.: Muliere/Walker, Scand.J.Statist. 1997



Prior distributions and prior 

The Beta process is defined on [0 ∞) The definition starts

processes

The Beta process is defined on [0,∞). The definition starts 
with the cumulative hazard function Λ and not with the 
distribution of the event times

• In the non-continuous case, it is not generally true that
F(t) = exp(1-Λ(t))F(t)  exp(1 Λ(t))

• One has to select a basic hazard function dΛ0
*(t)

I i d h h i dΛ i d d• It is assumed that the increments dΛ are independent 
and non-negative (i.e. Λ is a Lévy process) and that the 
dΛ are beta distributed with parametersdΛ are beta-distributed with parameters
c * dΛ0

*(t) , c * (1-dΛ0
*(t))

Th i t i diffi lt t
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• The existence is difficult to prove
Ref.: Hjort, Ann.Stat. 1990



Prior distributions and prior 

• Also the Beta process is conjugated to samples (possibly

processes

Also the Beta process is conjugated to samples (possibly 
censored) from the corresponding basic distribution

• In the limit for c = 0 the estimated survival function• In the limit for c = 0, the estimated survival function 
becomes the Kaplan-Meier curve

Ref.: Hjort, Ann.Stat. 1990
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Prior distributions and prior 

• The counting process counts the number of events

processes

The counting process counts the number of events 
observed for each interval (details in example below)

• As an associated Lévy process (cumulative intensity• As an associated Lévy process (cumulative intensity 
process), the Gamma process is often used (see also 
example below)example below)

• This is problematic as the assumption of independent 
increments is implausible in particular in neighbouringincrements is implausible in particular in neighbouring 
intervals

• However an alternative Lévy process is the Beta process• However, an alternative Lévy process is the Beta process 
(see also example below)

Ref : Sinha/Dey 1998 Laud et al 1998
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Ref.: Sinha/Dey 1998, Laud et al. 1998



Overlay of prior information and 
i f i f d

• The data-generating distribution is unknown, all that can

information from data

The data generating distribution is unknown, all that can 
be observed is the data (including censoring information)

• In all cases mentioned, the Bayesian synthesis behaves , y y
“reasonably” in so far as it depends only from the 
information that is in the data

Ref : Bernardo/Smith 1994 177 181
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Ref.: Bernardo/Smith 1994, 177-181



Example: Cox model (counting 
f l i )

• Discretization: For all distinct failure and censoring times

process formulation)

Discretization: For all distinct failure and censoring times 
ti (i=1,...,n), consider the risk set Ri. Events / censorings of 
several patients are possible for a time-point. All p p p
censoring is assumed to be non-informative here

• Consider for each patient j (j=1,...,N) the random variableConsider for each patient j (j 1,...,N) the random variable 
that counts the number of events until t, this is a 
“counting process” Nj(t)g p j

• Indicate by 0/1 whether patient j, while in risk set, has 
had an event at time t ∈ [ti,ti+dt). Multiple events are ad a eve t at t e t [ti,ti dt). u t p e eve ts a e
possible for a patient but only with different tis. At the 
boundaries, define t0 := 0 and an arbitrary tn+1 > tn.
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Example: Cox model (counting 
f l i )

• Risk set (special case: only 1 event / patient):

process formulation)

Risk set (special case: only 1 event / patient):
 
Patient (j) Time-point (ti) 

 t1 
 

t2 t3 . . . tn 

1 1 (c) 0 0 . . . 0 
2 1 (e) 0 0 02 1 (e) 0 0 . . . 0
3 1 1 (c) 0 . . . 0 
4 1 1 1 (e)  0 
5 1 1 1 (e)  0 
. . . .
: : : :   
N 1 1 1 . . . 1 (e) 
 

(c): Censoring occurs
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(c): Censoring occurs
(e): Event occurs



Example: Cox model (counting 
f l i )

• Consider the “intensity process” of patient j:

process formulation)

Consider the intensity process  of patient j:

Ij(t)dt := E(dNj(t) | previous events/censorings in [0,t))

( ) ( )whereby dNj(t) is the increment of Nj(t) in the interval 
[t,t+dt) and can take the values 0 or 1. Ij(t)dt is the 
probability that subject j has an event in [t t+dt) and withprobability that subject j has an event in [t,t+dt), and with 
dt → 0, Ij(t) becomes the hazard hj(t)

Whil h i i ill i h i k ( d ib d b• While the patient is still in the risk set (as described by a 
further process Yj(t)), the further assumption is that a 
covariate vector Z influences the hazard multiplicatively:covariate vector Zj influences the hazard multiplicatively:

Ij(t) = Yj(t) * λ0(t) * ezjβ
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with unknown but fixed “baseline hazard” function λ0(t).
Ref.: Clayton 1991, Sinha/Dey 1997, Laud et al. 1998, Hellmich 2001



Example: Cox model (counting 
f l i )

• Parameters in the PH model

process formulation)

Parameters in the PH model

Ij(t) = Yj(t) * λ0(t) * ezjβ

( ) ( ( ) ( )
t

are β and λ0(t) (or its integral Λ0(t) :=  λ0(u)du, the 
cumulative hazard function). 0

λ0(t) is piecewise constant, in [ti,ti+1) it is =: λ0,i.

The likelihood function, given realisations of Nj(t) andThe likelihood function, given realisations of Nj(t) and 
Yj(t), is

L(β λ0 0 λ0 ) ~ Product(i=1 n) ofL(β,λ0,0,...,λ0,n)  Product(i 1,...,n) of

(1-λ0,i)Sum(j∈Ri) ezjβ

S ( i i h ) zjβ
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* λ0,i
Sum(patients with event at ti) ezjβ



Example: Cox model (counting 
f l i )

• The prior distributions (considered independent of each

process formulation)

The prior distributions (considered independent of each 
other) are:

Pseudo-constant for βPseudo-constant for β
and because the dNj(t) can be considered Poisson-
distributed with intensity I (t)dt and the Gammadistributed with intensity Ij(t)dt and the Gamma 
distribution is conjugated to that:

G ( *dΛ *( ) ) f dΛ ( ) λ ( )dGamma (c*dΛ0
*(t) , c) for dΛ0(t) = λ0(t)dt

with a certainty parameter c and an initial guess Λ0
*(t)

of the cumulative hazardof the cumulative hazard

 only true without tied event times
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Example: Cox model (counting 
f l i )

• Therefore a better prior distribution for dΛ0(t) (actually for

process formulation)

Therefore a better prior distribution for dΛ0(t) (actually for 
the values of the piecewise constant function I(t)) is

Beta (c(t)*dΛ *(t) c(t)*(1-dΛ *(t))Beta (c(t) dΛ0 (t) , c(t) (1-dΛ0 (t))

where dΛ0
*(t) is an initial guess, and we assign

c(t) := c0*e-t/(tn+1)

whereby c0 is one parameter describing the certainty ofwhereby c0 is one parameter describing the certainty of 
dΛ0

*(t): Smaller c0 means less shrinkage and higher 
weight for the observations ti.
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Example: Cox model (counting 
f l i )

• Example data:

process formulation)

Example data:

• Matched-pairs structure now ignored

21

Matched pairs structure now ignored
Ref.: Spiegelhalter et al. 1996



Example: Cox model (counting 
f l i )

• WinBUGS results c = 1:

process formulation)

WinBUGS results, c  1:
Node statistics 
                node       mean      sd       MC error      2.5%     median  97.5% start        sample 
 

beta 1.629 0.4021 0.01324 0.8882 1.608 2.483 4001 10000 OKbeta 1.629 0.4021 0.01324 0.8882 1.608 2.483 4001 10000 OK
 dL0[1] 0.03507 0.02389 3.677E-4 0.004593 0.02981 0.09427 4001 10000 t=  1 
 dL0[2] 0.03811 0.02574 4.244E-4 0.004999 0.03275 0.1009 4001 10000 t=  2 
 dL0[3] 0.02114 0.02077 3.988E-4 6.048E-4 0.01488 0.07655 4001 10000 t=  3 
 dL0[4] 0.04376 0.02971 4.617E-4 0.005707 0.0374 0.1163 4001 10000 t=  4 

dL0[5] 0 04806 0 03237 4 493E-4 0 006248 0 04094 0 1294 4001 10000 t= 5dL0[5] 0.04806 0.03237 4.493E-4 0.006248 0.04094 0.1294 4001 10000 t=  5
 dL0[6] 0.07165 0.03888 5.804E-4 0.01601 0.06458 0.1656 4001 10000 t=  6 
 dL0[7] 0.02718 0.02615 4.699E-4 7.727E-4 0.01938 0.09738 4001 10000 t=  7 
 dL0[8] 0.117 0.0522 7.069E-4 0.03554 0.1103 0.2369 4001 10000 t=  8 
 dL0[9] 0.0371 0.03506 5.769E-4 0.001113 0.02678 0.1301 4001 10000 t=10 

dL0[10] 0 08195 0 05177 6 631E 4 0 01088 0 07243 0 206 4001 10000 t=11dL0[10] 0.08195 0.05177 6.631E-4 0.01088 0.07243 0.206 4001 10000 t=11
 dL0[11] 0.1047 0.0644 9.475E-4 0.01471 0.09289 0.2597 4001 10000 t=12 
 dL0[12] 0.06194 0.05357 8.638E-4 0.002142 0.04721 0.1998 4001 10000 t=13 
 dL0[13] 0.06817 0.05965 9.734E-4 0.002006 0.0517 0.221 4001 10000 t=15 
 dL0[14] 0.06937 0.05915 9.341E-4 0.002229 0.05414 0.2193 4001 10000 t=16 

dL0[15] 0 09532 0 0753 0 001085 0 004758 0 07646 0 2837 4001 10000 t 17

dL0 is the average hazard of both groups

dL0[15] 0.09532 0.0753 0.001085 0.004758 0.07646 0.2837 4001 10000 t=17
 dL0[16] 0.1985 0.1016 0.001343 0.03303 0.1894 0.4119 4001 10000 t=22 
 dL0[17] 0.7895 0.2508 0.007882 0.1927 0.9136 1.0 4001 10000 t=23
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dL0 is the average hazard of both groups



Example: Cox model (counting 
f l i )

• WinBUGS results:

process formulation)

WinBUGS results:

Similar results are output for the estimated survival 
curves of both groups separatelycurves of both groups separately

Graphs of the treatment difference parameter “beta”:
betabeta
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Example: Cox model (counting 
f l i )

• WinBUGS results:

process formulation)

WinBUGS results:
Estimated survival curves
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• All 3 curves have distributions (vertical)
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days



Discussion

• As a first step robustness w r t selection of c needs to be

Discussion

As a first step, robustness w.r.t. selection of c needs to be 
investigated, see e.g. Laud et al. 1998, p. 218-219

• Interpretation of prior information on cumulative hazard• Interpretation of prior information on cumulative hazard 
remains difficult

Interpretation of the limitations that arise from the• Interpretation of the limitations that arise from the 
mathematical properties of the processes still not 
sufficiently understoodsufficiently understood.
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Questions?Questions?

Thank you
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