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Parametric and nonparametric
probability models

* P: Model class + parameter value - data

NP: Whole distribution - data
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Parametric and nonparametric
probability models

« P:Test whether a parameter lies in a given region

or
investigation of posterior distribution of the parameter

NP: Test whether 2 distributions as a whole are equal
(reference space necessary)

or
Investigation of posterior distribution (continuously
indexed family of neighbourhoods) of a distribution

Ref.: Lehmann 1986, 334-337; Brunner/Langer 1999, 32-33
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Parametric and nonparametric
probability models

« What does the Bayesian synthesis

Prior function Likelihood

N

Posterior function

mean if spaces of whole distributions are investigated
instead of a finite-dimensional parameter space?

* In particular, how much “hidden information” is
contained in an apparently uninformative prior
distribution, selected for convenience or tractability?

Ref.: Berger, J.A.S.A. 2000, 1272 right
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Prior distributions and prior

Processes

« “Definition”: A stochastic process is an indexed family of
distributions over a sample space, whereby the indexing
has to be “continuous” in a certain sense, or at least
“measurable”

« [fthe sample space has dimension > 1, the process is also

called a “random field”

Ref.: Moller/Waagepetersen 2004, 7-11
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processes

 Adistribution of distributions can be considered as a
stochastic process, whereby the index set is itself a
distribution and “generates” a set of neighbourhoods
around a given distribution

 The given distribution, around which we want to

construct the neighbourhoods, is defined on the
partitions of the sample space

Ref.: Navarrete et al., Stat. Modelling 2008, 4
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Prior distributions and prior
processes

 The historically first process of this kind is the Dirichlet
process; for each partition, it assigns a Dirichlet
distribution to the probabilities of each element of the
partition

» We obtain a family of distributions around the given
distribution

» The family is conjugate to the given distribution, samples
from the given distribution (also if independently
censored) can be included

 The distributions in the family are, with probability 1,
discrete

Ref.: Ferguson, Ann. Stat. 1973, Gelfand et al. 2007
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Prior distributions and prior
processes

* The Dirichlet process was applied successfully to the
estimation of 1 survival curve with right-censoring

A sharp prior distribution has to be given first, around
which the family of distributions is centered

The relative weight of the given distribution, relative to the
information provided by the data, is described by a non-
negative number, c

The Kaplan-Meier estimator can be seen as a limiting case
ifc=0

Ref.: Suzarla/Van Ryzin, ]J.A.S.A. 1976
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Processes

The Polya tree is a special

case of the Dirichlet process

whereby the partitions of the sample space are generated
through recursive bisection; degenerate splits are

possible. At each branc
sub-sections are Beta-d

ning, the probabilities of the 2
istributed.

The Polya tree also needs a given sharp distribution to
begin with

The Polya tree already a

llows a representation of the

Kaplan-Meier curve, in the limiting case that the weight of
the prior distribution becomes 0

Ref.: Muliere/Walker, Scand.).Statist. 1997
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Prior distributions and prior
processes

The Beta process is defined on [0,0). The definition starts
with the cumulative hazard function A and not with the
distribution of the event times

In the non-continuous case, it is not generally true that
F(t) = exp(1-A(t))

One has to select a basic hazard function dA, (t)

Itis assumed that the increments dA are independent
and non-negative (i.e. A is a Lévy process) and that the
dA are beta-distributed with parameters

c*dAg (D), c* (1-dA,®)

» The existence is difficult to prove

Ref.: Hjort, Ann.Stat. 1990




™~ Boehringer
I|||I Ingelheim

Prior distributions and prior
processes

« Also the Beta process is conjugated to samples (possibly
censored) from the corresponding basic distribution

* Inthe limit for c =0, the estimated survival function
becomes the Kaplan-Meier curve

Ref.: Hjort, Ann.Stat. 1990
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Prior distributions and prior
processes

* The counting process counts the number of events
observed for each interval (details in example below)

As an associated Lévy process (cumulative intensity
process), the Gamma process is often used (see also
example below)

 Thisis problematic as the assumption of independent
increments is implausible in particular in neighbouring
IICIELR

However, an alternative Lévy process is the Beta process
(see also example below)

Ref.: Sinha/Dey 1998, Laud et al. 1998




™~ Boehringer
I|||I Ingelheim

Overlay of prior information and

information from data

* The data-generating distribution is unknown, all that can
be observed is the data (including censoring information)

In all cases mentioned, the Bayesian synthesis behaves
“reasonably” in so far as it depends only from the
information that is in the data

Ref.: Bernardo/Smith 1994, 177-181
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Example: Cox model (counting
process formulation)

« Discretization: For all distinct failure and censoring times
t. (i=1,...,n), consider the risk set R.. Events / censorings of
several patients are possible for a time-point. All
censoring is assumed to be non-informative here

Consider for each patient j (j=1,...,N) the random variable
that counts the number of events until t, thisis a
“counting process” Ni(t)

Indicate by 0/1 whether patient j, while in risk set, has
nad an event at time t e [t,t.+dt). Multiple events are
nossible for a patient but only with different t.s. At the
ooundaries, define t, := 0 and an arbitrary t_,, > ..
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process formulation

* Risk set (special case: only 1 event / patient):

Time-point (t;)

t1

1(c)
1(e)

(c): Censoring occurs
(e): Event occurs
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Example: Cox model (counting
process formulation)

« Consider the “intensity process” of patient j:
(t)dt := E(dN;(t) | previous events/censorings in [0,1))

whereby dN;(t) is the increment of Ni(t) in the interval
[t,t+dt) and can take the values 0 or 1. [(t)dtis the
probability that subject j has an event m [t,t+dt), and with
dt — 0, Ii(t) becomes the hazard h;(t)

While the patient is still in the risk set (as described by a
further process Yi(t)), the further assumption is that a
covariate vector Z; influences the hazard multiplicatively:

L;(t) = Y;(1) * Aq(0) * &P

with unknown but fixed “baseline hazard” function A4(t).
Ref.: Clayton 1991, Sinha/Dey 1997, Laud et al. 1998, Hellmich 2901
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Example: Cox model (counting
process formulation)

 Parameters in the PH model
(1) = Y;(t) * A(t) * e3P
are B and A(t) (or its integral Ay(t) :=f7»0(u)du, the
cumulative hazard function). ’
Ag(t) is piecewise constant, in [t,t,,) itis =: A .

The likelihood function, given realisations of Nj(t) and
Yi(t), is

L(B,Ag.gs+--rAg 0) ~ Product(i=1,...,n) of
(1-Ag ;) Sumde R eZjP

* 7‘0 ‘Sum(patients with event at t;) eZjP
)

18
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process formulation)

 The prior distributions (considered independent of each

other) are:
Pseudo-constant for 3

and because the dN,(t) can be considered Poisson-
distributed with mtenSIty [(t)dt and the Gamma

distribution is conjugated to t

nat:

Gamma (c*dA, (1), ) for d
with a certainty parameter
of the cumulative hazard

Ay(t) = A,()dt
c and an initial guess A, (t)

=>» only true without tied event times




™~ Boehringer
I|||I Ingelheim

Example: Cox model (counting
process formulation)

» Therefore a better prior distribution for dA,(t) (actually for
the values of the piecewise constant function I(t)) is

Beta (c(t)*d A, (1), c(t)*(1-d A, (1)
where dA, (1) is an initial guess, and we assign

c(t) := cp*e/tn*D)

whereby c, is one parameter describing the certainty of
dA, (t): Smaller c, means less shrinkage and higher
weight for the observations t..
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Example: Cox model (counting
process formulation

« Example data:

18 Leuk: survival analysis using Cox regression

Treatment Survival time in weeks
Placebo 1 1 2 2 3 4
5 5 ! o, o ]
11 12 12 15 17 22
i {) i ] i )
w 1+ 13 16 17" 19
22 23 25 32 32 34

" indicates censoring

» Matched-pairs structure now ignored
Ref.: Spiegelhalter et al. 1996
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Example: Cox model (counting
process formulation

 WinBUGS results, c =1:

Node statistics
node mean sd MC error 2.5% median 97.5% start

beta 1.629 0.4021 0.01324 0.8882 1.608 2.483 4001
dLO[1] 0.03507 0.02389 3.677E-4 0.004593 0.02981 0.09427 4001
dLO[2] 0.03811 0.02574 4.244E-4 0.004999 0.03275 0.1009 4001
dLO[3] 0.02114 0.02077 3.988E-4 6.048E-4 0.01488 0.07655 4001
dLO[4] 0.04376 0.02971 4.617E-4 0.005707 0.0374 0.1163 4001
dLO[5] 0.04806 0.03237 4.493E-4 0.006248 0.04094 0.1294 4001
dLO[6] 0.07165 0.03888 5.804E-4 0.01601 0.06458 0.1656 4001
dLO[7] 0.02718 0.02615 4.699E-4 7.727E-4 0.01938 0.09738 4001
dLo[8] 0.117 0.0522 7.069E-4 0.03554 0.1103 0.2369 4001
dLO[9] 0.0371 0.03506 5.769E-4 0.0011130.02678 0.1301 4001
dLO[10] 0.08195 0.05177 6.631E-4 0.01088 0.07243 0.206 4001
dLO[11] 0.1047 0.0644 9.475E-4 0.01471 0.09289 0.2597 4001
dLO[12] 0.06194 0.05357 8.638E-4 0.0021420.04721 0.1998 4001
dLO[13] 0.06817 0.05965 9.734E-4 0.002006 0.0517 0.221 4001
dLO[14] 0.06937 0.05915 9.341E-4 0.002229 0.05414 0.2193 4001
dLO[15] 0.09532 0.0753 0.001085 0.004758 0.07646 0.2837 4001
dLO[16] 0.1985 0.1016 0.0013430.03303 0.1894 0.4119 4001
dLO[17] 0.7895 0.2508 0.0078820.1927 0.9136 1.0 4001

dLO is the average hazard of both groups

o
A

coO~NO O WNPEF
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o WinBUGS results:

Similar results are output for the estimated survival
curves of both groups separately

Graphs of the treatment difference parameter “beta”:

beta

beta sample: 10000
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Example: Cox model (counting
process formulation

o WinBUGS results:

Estimated survival curves

¢ Placebo
6-MP
——Av. hazard (1/day)

 All 3 curves have distributions
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* As a first step, robustness w.r.t. selection of ¢ needs to be
investigated, see e.g. Laud et al. 1998, p. 218-219

* Interpretation of prior information on cumulative hazard
remains difficult

« Interpretation of the limitations that arise from the

mathematical properties of the processes still not
sufficiently understood.
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Questions?

Thank you




