# Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

Julia Braun Leonhard Held

University of Zurich

Reisensburg, September 2007

 ${\color{black}{\bullet}} \bullet {\color{black}{\bullet}}, {\color{black}{\bullet}} \circ {\color{black}{\bullet}}, {\color{black}{\bullet}} \bullet {\color{black}{\bullet}}$ 

University of Zurich

Julia Braun, Leonhard Held

## Outline



- 2 Model evaluation and model criticism
- 3 Calculation with MCMC methods

### 4 Examples





University of Zurich

Julia Braun, Leonhard Held

### Introduction

### One purpose of statistical modelling: Forecasts for future observations

Key quantity in a Bayesian context:

Posterior predictive distribution

$$f(y|\mathbf{x}) = \int f(y|\theta, \mathbf{x}) f(\theta|\mathbf{x}) d\theta$$

▲□▶, ♡♀♡, ▲□▶, ▲≧▶.

University of Zurich

Julia Braun, Leonhard Held

## Predictive distribution

Two main tasks:

#### Sharpness

- Property of the predictions
- Refers to the concentration of the predictive distribution

### Calibration

- Joint property of the predictive distribution and the real data
- Agreement of the true values and the chosen predictive distribution

・ロト うくぐ ・日ト ・ヨト

Julia Braun, Leonhard Held

## Quantitative assessment of probabilistic forecasts

#### Model evaluation

Comparing alternative models based on the predictive distribution and the true value

Model criticism

Assessing the agreement of one model with external data

▲□▶, ♡�?, ▲□▶, ▲≧▶

University of Zurich

Julia Braun, Leonhard Held

## Model evaluation

### Scoring rules

- Numerical value based on the predictive distribution and the true value that arised later
- Normally positively oriented, but also possible as penalty (see example 3)
- Cover both sharpness and calibration
- Proper scores: Expected value of the score is maximal if the observation is derived from the predicitive distribution *F*.
- Strictly proper scores: Expected value has only one maximum.
- Interpretation: Proper scores do not lead the forecaster to turn away from his true belief. Strictly proper scores penalize such an alteration.
- The mean of proper scores is also proper.

4 1 1

### Proper scores for continuous responses

#### Continuous ranked probability score

$$CRPS(Y, y_{obs}) = -\int_{-\infty}^{\infty} (P(Y \le t) - \mathbf{1}(y_{obs} \le t))^2 dt$$
  
 $= \frac{1}{2}E|Y - Y'| - E|Y - y_{obs}|.$ 

where Y and Y' are independent realisations from  $f(y|\mathbf{x})$ .

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

Julia Braun, Leonhard Held

## Proper scores for continuous responses

### Energy Score

$$\mathsf{ES}(\mathsf{Y}, \mathsf{y}_{obs}) = \frac{1}{2}\mathsf{E}|\mathsf{Y} - \mathsf{Y}'|^{\alpha} - \mathsf{E}|\mathsf{Y} - \mathsf{y}_{obs}|^{\alpha}$$

with  $\alpha \in (0, 2)$ .

Multivariate energy score

$$ES(Y, y_{obs}) = \frac{1}{2}E||Y - Y'||^{\alpha} - E||Y - y_{obs}||^{\alpha}$$

where  $\|.\|$  denotes the Euclidean norm.

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

## Proper scores

#### Logarithmic score

$$LogS(Y, y_{obs}) = \log f(y_{obs}|\mathbf{x})$$

### Spherical score

$$SphS(Y, y_{obs}) = \frac{f(y_{obs}|\mathbf{x})}{\sqrt{\int_{-\infty}^{\infty} f(y|\mathbf{x})^2 dy}}$$

University of Zurich

▲□▶ の�� ▲□▶ ▲≧▶

Julia Braun, Leonhard Held

## Model criticism

- No alternative model assumptions necessary
- Helps to detect and maybe correct inappropriate models

### Prequential principle (Dawid, 1984):

A measure of agreement between a predictive distribution and the real values should depend on the distribution only through the sequence of predictions.

▲□▶ 釣�(や ▲圖▶ ▲厘≯

Julia Braun, Leonhard Held

## Tools for model criticism

Probability integral transform (PIT)

$$p_{PIT} = F(y_{obs}|\mathbf{x})$$

- *F* is the distribution function of the posterior predictive density.
- If F is continuous and the observation comes from F, the PIT value is uniformly distributed on (0, 1).

▲□▶ ��� ▲□▶ ▲≧▶

University of Zurich

- Check: Plotting the histogram for several PIT values or testing for uniform distribution.
- Disadvantage: Only possible for univariate distributions.

Julia Braun, Leonhard Held

## Tools for model criticism

### Box's predictive p-value

$$p_{Box} = P\{f(Y|\mathbf{x}) \leq f(y_{obs}|\mathbf{x})|\mathbf{x}\}$$

- $f(Y|\mathbf{x})$  is a function of the random variable  $Y \sim f(y|\mathbf{x})$ .
- Also uniformly distributed on (0,1).
- Applicable for multivariate data.

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

Julia Braun, Leonhard Held

## Relation

For symmetric and unimodal distributions:

$$p_{Box} = 1 - 2|p_{PIT} - 0.5|$$



Julia Braun, Leonhard Held

## Histograms



<ロト, つへで, < 団ト, < ≧ト University of Zurich

Julia Braun, Leonhard Held

## Calculation with MCMC methods

- In most cases: predictive density  $f(y|\mathbf{x})$  unknown.
- Solution: MCMC methods
- Gibbs sampling algorithm: Sample iteratively from full conditional distributions
- Samples  $\theta^{(1)}, ..., \theta^{(N)}$  are available from posterior distribution
- For each set of model parameters  $\theta^{(n)}$  we additionally draw a value for  $y^{(n)}$ .

### Monte-Carlo estimation

$$\hat{f}(y|\mathbf{x}) = rac{1}{N}\sum_{n=1}^{N}f(y| heta^{(n)},\mathbf{x})$$

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ ��� ▲□▶ ▲≧▶

## Estimation

#### Energy score

- $ES(Y, y_{obs}) = \frac{1}{2}E|Y Y'|^{\alpha} E|Y y_{obs}|^{\alpha}$ .
- Split samples for  $y^{(n)}$  in two parts  $y^{(n)}$  and  $y'^{(n)}$ .
- As they are far enough apart, they can be seen as independent.
- Alternative calculations possible, for example all possible differences,...

### **PIT** value

- $p_{PIT} = F(y_{obs}|\mathbf{x})$
- Estimation by evaluating  $\frac{1}{N} \sum_{n=1}^{N} \mathbf{1}(y^{(n)} \leq y_{obs})$ .

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

### Estimation

For the other measures:  $\hat{f}(y_{obs}|\mathbf{x})$  needed.

Logarithmic score

$$\widehat{LogS}(Y, y_{obs}) = \log \hat{f}(y_{obs} | \mathbf{x})$$

Box's p-value

$$\hat{p}_{Box} = rac{1}{N}\sum_{n=1}^{N} \mathbf{1}(\hat{f}(y^{(n)}|\mathbf{x}) \leq \hat{f}(y_{obs}|\mathbf{x}))$$

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ の�� ▲□▶ ▲≧▶

## Estimation

### Spherical score

• 
$$\widehat{SphS}(Y, y_{obs}) = \frac{\hat{f}(y_{obs}|\mathbf{x})}{\sqrt{\int_{-\infty}^{\infty} \hat{f}(y|\mathbf{x})^2 dy}}$$

- Problem: Integral of  $\hat{f}(y|\mathbf{x})^2$  in the denominator
- Numerical solution: Newton-Cotes formulas
- Samples  $y^{(n)}$  serve as supporting points
- Approximation of the value of the integral between two consecutive supporting points (three different versions)
- Sum of these approximations
- Results indistinguishable for different versions of Newton-Cotes

University of Zurich

▲□▶ シタク ▲□▶ ▲目♪

Julia Braun, Leonhard Held

Toy example

#### Artificial data set by O'Hagan (2003):

| Group | Observations |      |      |      |      | Sample mean |      |
|-------|--------------|------|------|------|------|-------------|------|
| 1     | 2.73         | 0.56 | 0.87 | 0.90 | 2.27 | 0.82        | 1.36 |
| 2     | 1.60         | 2.17 | 1.78 | 1.84 | 1.83 | 0.80        | 1.67 |
| 3     | 1.62         | 0.19 | 4.10 | 0.65 | 1.98 | 0.86        | 1.57 |
| 4     | 0.96         | 1.92 | 0.96 | 1.83 | 0.94 | 1.42        | 1.34 |
| 5     | 6.32         | 3.66 | 4.51 | 3.29 | 5.61 | 3.27        | 4.44 |

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 釣�? ▲□▶ ▲≧▶

## Bayesian hierarchical models

Model 1: Bayesian linear model

$$y_{ij}|\mu,\sigma^2 \sim N(\mu,\sigma^2),$$
  
 $\mu \sim N(2,10),$   
 $\sigma^2 \sim IG(10,11).$ 

Model 2: Random intercept

$$egin{aligned} y_{ij} \mid \lambda_i, \sigma^2 &\sim \mathcal{N}(\lambda_i, \sigma^2), \ \lambda_i \mid \mu, \tau^2 &\sim \mathcal{N}(\mu, \tau^2), \ \mu &\sim \mathcal{N}(2, 10), \ \sigma^2 &\sim \mathcal{IG}(10, 11), \ \tau^2 &\sim \mathcal{IG}(10, 3). \end{aligned}$$

Julia Braun, Leonhard Held

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

## Univariate results

Mean scores:

|         | CRPS  | ES ( $\alpha = 0.5$ ) | LogS  | SphS |
|---------|-------|-----------------------|-------|------|
| Model 1 | -0.73 | -0.56                 | -1.64 | 0.97 |
| Model 2 | -0.38 | -0.41                 | -1.20 | 1.29 |

#### P-values:

|       | IVIOC | lel 1 | Model 2 |       |  |
|-------|-------|-------|---------|-------|--|
| Group | PIT   | Box   | PIT     | Box   |  |
| 1     | 0.165 | 0.325 | 0.210   | 0.431 |  |
| 2     | 0.163 | 0.316 | 0.154   | 0.318 |  |
| 3     | 0.174 | 0.344 | 0.191   | 0.373 |  |
| 4     | 0.289 | 0.575 | 0.420   | 0.850 |  |
| 5     | 0.772 | 0.452 | 0.322   | 0.630 |  |

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 釣�? ▲□▶ ▲≧▶

Multivariate results

#### Multivariate:

| Model | CRPS   | ES ( $\alpha = 0.5$ ) | LogS   | Box   |
|-------|--------|-----------------------|--------|-------|
| 1     | -1.881 | -0.961                | -8.766 | 0.447 |
| 2     | -1.332 | -0.811                | -6.646 | 0.763 |

<ロト, つへで, < 団ト, < ≧ト University of Zurich

Julia Braun, Leonhard Held

Pigs' weight (Diggle, 2002)



## Models

Model 1: Linear model

Model 2: Linear model with random intercept

Model 3: Linear model with random intercept and random slope

In all models: time as explanatory variable

▲□▶, 釣��, ▲□▶, ▲≧▶

University of Zurich

Julia Braun, Leonhard Held

## Results

Average univariate scores:

|         | CRPS   | ES ( $\alpha = 0.5$ ) | LogS    | SphS  |
|---------|--------|-----------------------|---------|-------|
| Model 1 | -3.753 | -1.284                | -20.787 | 0.322 |
| Model 2 | -2.093 | -0.954                | -3.210  | 0.722 |
| Model 3 | -1.099 | -0.677                | -2.446  | 0.817 |

Multivariate scores:

| Model | CRPS    | ES ( $\alpha = 0.5$ ) | LogS     |
|-------|---------|-----------------------|----------|
| 1     | -31.749 | -4.03                 | -Inf     |
| 2     | -18.57  | -3.115                | -151.622 |
| 3     | -9.807  | -2.216                | -143.910 |

Multivariate Box's p-values:

| Model 1 | Model 2 | Model 3 |  |
|---------|---------|---------|--|
| 0       | 0       | 0.087   |  |

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 少へ(?) ▲□▶ ▲ ≧▶

### Histograms of the PIT values





Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

▲□▶, 釣��, ▲□▶, ▲≧▶

University of Zurich

## Histograms of the Box's p-values





Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

< ロト, かくで, < 母ト, < 言ト

University of Zurich

## Larynx cancer in Germany

#### General information

- Larynx cancer data from Germany from the years 1952-2002
- Analysis of mortality counts using the age-period-cohort (APC) model
- Age groups under 30 often excluded from analysis because of low counts
- Suggestion of Baker and Bray (2005): Age-specific predictions based on full data might be more precise.
- Use of scoring rules to check this statement
- In this case: scoring rules negatively oriented

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 釣�(や ▲圖▶ ▲厘≯

## Data analysis

#### Age-period-cohort model

- n<sub>ij</sub>: Number of persons at risk in age group i and year j
- Number of deaths in age group *i* and year *j* binomially distributed with parameters n<sub>ij</sub> and π<sub>ij</sub>
- Additive decomposition of the logarithmic odds η<sub>ij</sub> in overall level μ, age effects θ<sub>i</sub>, period effects φ<sub>i</sub> and cohort effects ψ<sub>k</sub>:

$$\eta_{ij} = \log\{\frac{\pi_{ij}}{1 - \pi_{ij}}\} = \mu + \theta_i + \phi_j + \psi_k$$

University of Zurich

・ロト うくぐ ・日ト ・ヨト

Julia Braun, Leonhard Held

## Fitted models

#### Four predictive models:

- Model 1: all age groups; overdispersion
- Model 2: all age groups; no overdispersion
- Model 3: only age groups over 30; overdispersion
- Model 4: only age groups over 30; no overdispersion

Predictions of mortality counts for 1998-2002, 12 age groups

Non-parametric smoothing priors within a hierarchical Bayesian framework

Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

▲□▶ 釣�(や ▲圖▶ ▲厘≯

## Number of deaths

Observed and fitted/predicted number of deaths per 100,000 males, based on model 4:



50 - 54



University of Zurich



#### Julia Braun, Leonhard Held

## Scores

#### Scores for count data

- Logarithmic score: LogS(P, y<sub>obs</sub>) = log p<sub>y<sub>obs</sub>
  </sub>
- Spherical score:  $SphS(P, y_{obs}) = -p_{y_{obs}}/||p||$
- Ranked probability score:  $RPS(P, y_{obs}) = E_P |Y - y_{obs}| - \frac{1}{2}E_P |Y - Y'|$
- Additionally: Squared error score: SqES(P,  $y_{obs}$ ) =  $(y_{obs} - \mu_p)^2$

| Model | age | disp | LogS | SphS   | RPS  | SqES  |
|-------|-----|------|------|--------|------|-------|
| 1     | +   | +    | 4.27 | -0.153 | 14.0 | 852.9 |
| 2     | +   | _    | 4.35 | -0.152 | 12.9 | 684.4 |
| 3     | -   | +    | 4.29 | -0.152 | 14.2 | 870.0 |
| 4     | -   | -    | 4.35 | -0.151 | 12.2 | 564.8 |

▲□▶ うくで ▲□▶ ▲■▶

Julia Braun, Leonhard Held

University of Zurich

## Explanation

#### Disagreement of the scores

- LogS and SphS roughly independent of size of counts
- RPS and SqES highly dependent on the size of the counts
- Few high count cases dominate differences in the mean score.
- Better fit of model 4 in mid age groups.
- Model 1 to prefer in younger and older age groups
- As counts are especially high in mid age groups: Greater weight in the mean of RPS and SqES.

▲□▶ 釣�(や ▲圖▶ ▲厘≯

Julia Braun, Leonhard Held

## Illustrative graphic



Julia Braun, Leonhard Held

Monte Carlo estimation techniques for model evaluation and criticism in Bayesian hierarchical models

University of Zurich

## Conclusion and Outlook

Useful methods for model comparison and criticism, but:

- computation can be time consuming,
- probably numerically instable for multivariate data,
- multivariate application needs more exploration,
- assessment of Monte Carlo error necessary,
- performance of the different scores has to be studied further.

▲□▶ ろんら ▲□▶ ▲目♥

Julia Braun, Leonhard Held

### References

Baker, A., Bray, I. (2005). Bayesian projections: What are the effects of excluding data from younger age groups? *American Journal of Epidemiology* **162**, 798-805.

Box, G.E.P. (1980). Sampling and Bayes' inference in scientific modelling and robustness, *Journal of the Royal Statistical Society, Series A* **143**, 383-430.

Dawid, A.P. (1984). Statistical theory: The prequential approach, *Journal of the Royal Statistical Society, Series A* **147**, 278-292.

Diggle, J.P., Heagerty, P., Liang, K.Y., Zeger, S.L. (2002). Analysis of Longitudinal Data (second edition). Oxford University Press.

Gneiting, T., Raftery, A.F. (2007). Strictly proper scoring rules, prediction and estimation, *Journal of the American Statistical Association* **102**, 359-378.

O'Hagan, A. (2003). HSSS model criticism. *in* Green, P.J., Hjort, N.L., Richardson, E.S. (ed.), *Highly Structured Stochastic Systems*, Oxford University Press, 423-444.

Julia Braun, Leonhard Held

University of Zurich