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Preliminaries: motivations for
systematic reviews

•   To generalized a medical result in order to apply it to other 
     populations,  subgroups, etc. 
 
•   To collect background information to design a new clinical trial.
 
•   Costs: it is substantially cheaper to analyze published 
     information than carry out a new clinical trial.
 
•   Health Care Evaluation: to evaluate critically published 
     information. 



Acute appendicitis is one of the most common acute surgical events 
(e.g. 250,000 per year in USA). Traditional diagnoses reported 
false positive rates of 20% to 30%. 

Computer Tomography scans (CT) has been advocated to be of high
potential diagnostic benefit in suspected appendicitis. 

Question: Which diagnostic performance has this technology ?

Running Example



Running Example

A systematic review was performed (Ohmann et al. 2005) to 
evaluate the diagnostic benefit of this technology. They selected 
52 studies for analysis:
       author country   n  tp fn fp  tn  se  sp
…………………………….. 
   Applegate2001     USA  96  87  2  4   3  98  43
      Brandt2003     USA 179 168  1  3   7  99  70
         Cho1999      AU  36  21  0  1  14 100  93
        Cole2001     USA  96  40  5  4  43  89  91
  D'Ippolito1998  Brazil  52  40  4  0   8  91 100
     Hershko2002  Israel 197  67  5  7 118  93  94
…………………………….. 

Pooled results with a random effects model: 

Sensitivity: 94.5% [94.1, 95.8]
Specificity: 94.1% [91.8, 94.5]



Particular features of data coming
from systematic reviews

• Studies included in a systematic review are unique, i.e.,
     they are NOT a random sample of studies.

• The data collection is vulnerable to multiple sources of bias:

study internal bias
bias to external validity
bias to inclusion criteria
publication bias 

•  Usually an small number of studies are included in the review.

Bayesian methods are particularly well-suited to such scenario. 



The Diagnostic Test Data

Test results are usually summarized in a 2×2 table giving the
number of  positive and negative test results for patients with and
without disease:

a+b+c+db+da+cTotal

c+ddc(-)

a+bba(+)
Test

Outcome

TotalAbsentPresent

Reference result



The Diagnostic Test Data Summaries

• True positive rate (TPR) or Sensitivity = a/(a+c)
• True negative rate (TNR) or Specificity = d/(b+d)
• The false positive rate: FPR= b/(b+d)
• The false negative rate: FNR= c/(a+c)
• The Positive Predictive Value: PPV = a/(a+b)
• The Negative Predictive Value: NPV = d/(c+d)
• Likelihood ratio for a positive test: LR+= Sensitivity / ( 1- Specificity)
• Likelihood ratio for a negative test: LR- = (1-Sensitivity)/Specificity
• Diagnostic Odds Ratio DOR= (a×d)/(b×c)
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Test Data Generation Process

The test threshold is chosen as a
tread off between TPR and FPR.

 
T

j
=

test positive if y
i
≥k                      

test negative otherwise.                 

⎧
⎨
⎪

⎩⎪

Let yj be a test measurement of 
patient j and “k” a threshold value.

Then the test outcome is

The construction of diagnostic test introduces in general strong correlation
between TPR and FPR.



The Summary ROC curve (SROC)

 
The idea of SROC curve is to represent the relationship between
TPR and FPR across studies, assuming that they may use different
“threshold values” (don’t take this literally!). 

It can be achieved by using a meta-regression model (Moses et al. 1993)
that under a random effect model is:

                           Di ~ Normal(A+BSi, σ2
Di + τ2),

Di = logit(TPRi) - logit(FPRi),  Si = logit(TPRi) + logit(FPRi) and σDi is the 
asymptotic standard error of Di. 

Reverse the transformations and deduce the relationship between
TPR and FPR:

 

TPR=
exp -A (1-B)( ) × FPR 1-FPR( )( ) 1+B( ) 1-B( )

1+exp -A (1-B)( ) × FPR 1-FPR( )( ) 1+B( ) 1-B( )⎡
⎣⎢

⎤
⎦⎥



The SROC curve analysis

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   5.5783     0.1768  31.554  < 2e-16 ***
S            -0.3683     0.1227  -3.001  0.00419 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Limitations of the SROC curve

It has been developed, essentially as a graphical device :  

•    It is not useful to make predictions of future studies

•    S is assumed fixed, which is NOT.

•    Difficult to link explanatory variables.

•    General functional statistics, e.g., the area under the SROC curve: 

is only analytically tractable for B=0.

 A practical Bayesian approach may complement these issues.

 

AUC=
exp -A (1-B)( ) x 1-x( )( ) 1+B( ) 1-B( )

1+exp -A (1-B)( ) x 1-x( )( ) 1+B( ) 1-B( )⎡
⎣⎢

⎤
⎦⎥

0
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A Basic Bayesian Model

Given the data “y” of “m” studies, we can model the number of true
positives ai and false positives bi directly by a GLMM as follows:
 
       ai ~ Binomial(TPRi, ni,1),    bi ~ Binomial(FPRi, ni - ni,1),
 
with

        logit(TPRi) = (Di + Si) / 2,   logit(FPRi) = (Di - Si) / 2,
 
and
 

(Di, Si) ~ MNormal(µ, Λ), Λ = Σ-1.

Note: the logit(⋅) transformation can be replaced by other link function
(e.g. probit or complementary log logistic, etc.). The multivariate
Gaussian assumption can, also, be replaced by a multivariate t or other
density. 



Prior specification

Independent Normals for the components of µ = (µD, µS):
 

µD~ N(mD, vD),   µS ~ N(ms, vs) .

Independent Uniforms for the variance covariance matrix of
Di and Si, Λ-1 = Σ:
 

σ2
D,D~Uniform(0,kD),   σ2

S,S~Uniform(0,kS),

σD,S = σS,D = ρ σD,D σS,S,   ρ~Uniform(-r,r).

The constants mD, ms, vD, vs, kD, kS and r can be use for prior elicitation
and sensitivity analysis.



Inferential Statements

• Observed quantities, i.e., data y
 
• Unknown quantities are represented by θ (parameters, missing data, …)
 
• Inference is based on the posterior distribution 

                                        p(θ | y) ∝ p(θ) p(y | θ).
 
• Inference on functional parameters, say g(θ), is based on the marginal 
   posterior p(g(θ) | y).
 
• Predictions of new data y* are based on the marginal predictive p(y*| y)
 
Those problems are no analytical tractable, we based our inference on
empirical approximations using MCMC (a Gibbs sampler).
 



The directed acyclic graph (DAG)

The posterior density p(θ | y) is factorised using a “directed
local Markov” property

p(θ | y) = p(θV|parents[v], y),

This decomposition:

•    defines relationship between model quantities,

•    programs the kernel of the Markov chain,

•    gives a non-algebraic description of the model.



µ Λ Σ

The DAG of the model

i = 1,…,m

Di, Si

TPRi FPRi

ai bini,1 ni,2



Recovering the SROC

From the distribution of  (Di | Si = si) we can recover the SROC as
follows:
 
                        E(Di | Si = si)  = A + B (si - µS),
 
                  A = µD - µS ρ σD,D/ σS,S  and B = ρ σD,D/ σS,S

 
                        var(Di | Si = si) = σ2

D,D (1-ρ2).

•  Reverse the transformations and deduce the relationship between
TPR and FPR.

•  The AUC can be calculated from SROC numerically.

Operationally, we calculate the required functions (A, B, SROC, AUC)
as logical nodes at each iteration of the MCMC and we summarise 
posteriors samples.



µ

Λ

Σ

Di, Si

TPRi FPRi

ai bini,1 ni,2

A

B

fprj

SROC

AUC

Extended DAG for the SROC curve



Making predictions and
simulating data from the model

Reasons for predictions and data simulation:
 
•  Predict the results of a new study. 

•  Assess the results of a study not included in the review.

•  Proof-of-concepts and plan a new study.

•  Model checking and model selection. 
 
To predict a new study results we define an “stochastic node child” 
(D*, S*) of  p(µ, Λ | y) and two logical nodes TPR(D*, S*) and FPR(D*, S*).
These results in a predictive posterior of TPR* and FPR*.
 
Given the sample size of the study, new data is simulated as an
“stochastic node child” of Bin(TPR*, n1) and Bin(FPR*, n2).



µ

Λ Σ

Di, Si

TPRi FPRi

ai bini,1 ni,2

A

B

SROC
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Extended DAG for predictions
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Analysis

Computational specification:

No prior elicitation was done. We take the hyper-prior constants:
mD=0, ms=0, vD=0.05 vs =0.05, kD= 100, kS = 100 and r=1.

MCMC set up: We run a single chain of length 20,000 we take one in 5
we discard the first 500 values. 3500 values to make inference. 

Convergence diagnostics were done graphically. No mayor convergence
problems were presented.
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Pr(µ, Σ|y)



Pr(SROC| y), Pr(A|y) Pr(B|y)

CI 95%:

A:  6.062 [5.654, 6.4775]  the length is 25% wider than RE
B: -0.571 [-0.953, -0.167] here the length is 63% wider!



Pr(AUC|y)

CI 95%:

AUC: 96.73,  [94.75, 97.94]



Predictions: Pr(TPR*|y) and Pr(FPR*|y)

CIs 95%

TPR*:   0.954 [0.867, 0.986] ;      1 - FPR*:  0.951 [0.670, 0.994]



Predictions: Pr(TP*|y), Pr(FP*|y), n=100



Predictive Summary Surface:
Pr(TPR*,FPR*|y)



Further work …

•    Model diagnostic: sensitivity to priors; residuals at different levels 

•    Generalized evidence synthesis: 

How to combine studies when they are different 
Link explanatory variables
Model study quality

•     Publication bias
   
 



Conclusions
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