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Spatio-temporal regression data

• Regression in a general sense:

– Generalised linear models,

– Multivariate (categorical) generalised linear models,

– Regression models for survival times (Cox-type models, AFT models).

• Common structure: Model a quantity of interest in terms of categorical and
continuous covariates, e.g.

E(y|u) = h(u′γ) (GLM)

or
λ(t|u) = λ0(t) exp(u′γ) (Cox model)

• Spatio-temporal data: Temporal and spatial information as additional covariates.
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• Spatio-temporal regression models should allow

– to account for spatial and temporal correlations,

– for time- and space-varying effects,

– for non-linear effects of continuous covariates,

– for flexible interactions,

– to account for unobserved heterogeneity.
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Example I: Forest health data

• Yearly forest health inventories carried out from 1983 to 2004.

• 83 beeches within a 15 km times 10 km area.

• Response: defoliation degree of beech i in year t, measured in three ordered categories:

yit = 1 no defoliation,
yit = 2 defoliation 25% or less,
yit = 3 defoliation above 25%.

• Covariates:

t calendar time,
si site of the beech,
ait age of the tree in years,
uit further (mostly categorical) covariates.
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• Cumulative probit model:

P (yit ≤ r) = Φ
(
θ(r) − ηit

)

with standard normal cdf Φ, thresholds −∞ = θ(0) < θ(1) < θ(2) < θ(3) = ∞ and

ηit = f1(t) + f2(ageit) + f3(t, ageit) + fspat(si) + u′itγ

θ(1) θ(2) θ(3)η θ(1) θ(2) θ(3)η

Analysing geoadditive regression data: a mixed model approach 5



Thomas Kneib Example I: Forest health data

Analysing geoadditive regression data: a mixed model approach 6



Thomas Kneib Example I: Forest health data

−
6

−
3

0
3

 

5 30 55 80 105 130 155 180 205 230
age in years

−
2

−
1

0
1

2

 

1983 1990 1997 2004

calendar time

calendar time

1985
1990

1995
2000

age in years
50

100

150

200

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Analysing geoadditive regression data: a mixed model approach 7



Thomas Kneib Example I: Forest health data

• Category-specific trends:

P (yit ≤ r) = Φ
[
θ(r) − f

(r)
1 (t)− f2(ageit)− fspat(si)− u′itγ

]

• More complicated constraints:

−∞ < θ(1) − f
(1)
1 (t) < θ(2) − f

(2)
1 (t) < ∞ for all t.
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Structured additive regression

• General Idea: Replace usual parametric predictor with a flexible semiparametric
predictor containing

– Nonparametric effects of time scales and continuous covariates,

– Spatial effects,

– Interaction surfaces,

– Varying coefficient terms (continuous and spatial effect modifiers),

– Random intercepts and random slopes.

• All effects can be cast into one general framework.
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• Penalised splines.

– Approximate f(x) by a weighted sum of B-spline basis functions.

– Employ a large number of basis functions to enable flexibility.

– Penalise differences between parameters of adjacent basis functions to ensure
smoothness.
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• Bivariate penalised splines.
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• Varying coefficient models.

– Effect of covariate x varies smoothly over the domain of a second covariate z:

f(x, z) = x · g(z)

– Spatial effect modifier ⇒ Geographically weighted regression.
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• Spatial effect for regional data: Markov random fields.

– Bivariate extension of a first order random walk on the real line.

– Define appropriate neighbourhoods for the regions.

– Assume that the expected value of fspat(s) is the average of the function
evaluations of adjacent sites.

τ2

2

t−1 t t+1

f(t−1)

E[f(t)|f(t−1),f(t+1)]

f(t+1)
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• Spatial effect for point-referenced data: Stationary Gaussian random fields.

– Well-known as Kriging in the geostatistics literature.

– Spatial effect follows a zero mean stationary Gaussian stochastic process.

– Correlation of two arbitrary sites is defined by an intrinsic correlation function.

– Can be interpreted as a basis function approach with radial basis functions.

Analysing geoadditive regression data: a mixed model approach 13



Thomas Kneib Mixed model based inference

Mixed model based inference

• Each term in the predictor is associated with a vector of regression coefficients with
multivariate Gaussian prior / random effects distribution:

p(ξj|τ2
j ) ∝ exp

(
− 1

2τ2
j

ξ′jKjξj

)

• Kj is a penalty matrix, τ2
j a smoothing parameter.

• In most cases Kj is rank-deficient.

⇒ Reparametrise the model to obtain a mixed model with proper distributions.
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• Decompose

ξj = Xjβj + Zjbj,

where

p(βj) ∝ const and bj ∼ N(0, τ2
j I).

⇒ βj is a fixed effect and bj is an i.i.d. random effect.

• This yields the variance components model

η = x′β + z′b,

where in turn

p(β) ∝ const and b ∼ N(0, Q).
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• Obtain empirical Bayes estimates / penalised likelihood estimates via iterating

– Penalised maximum likelihood for the regression coefficients β and b.

– Restricted Maximum / Marginal likelihood for the variance parameters in Q:

L(Q) =
∫

L(β, b,Q)p(b)dβdb → max
Q

.
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Software

• Implemented in the software package BayesX.

• Available from

http://www.stat.uni-muenchen.de/~bayesx
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Childhood mortality in Nigeria

• Data from the 2003 Demographic and Health Survey (DHS) in Nigeria.

• Retrospective questionnaire on the health status of women in reproductive age and
their children.

• Survival time of n = 5323 children.

• Numerous covariates including spatial information.

• Analysis based on the Cox model:

λ(t; u) = λ0(t) exp(u′γ).
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• Limitations of the classical Cox model:

– Restricted to right censored observations.

– Post-estimation of the baseline hazard.

– Proportional hazards assumption.

– Parametric form of the predictor.

– No spatial correlations.

⇒ Geoadditive hazard regression.
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Interval censored survival times

• In theory, survival times should be available in days.

• Retrospective questionnaire⇒most uncensored survival times are rounded (Heaping).
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• In contrast: censoring times are given in days.

⇒ Treat survival times as interval censored.
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• Likelihood contributions:

P (T > C) = S(C)

= exp

[
−

∫ C

0

λ(t)dt

]
.

P (T ∈ [Tlower, Tupper]) = S(Tlower)− S(Tupper)

= exp

[
−

∫ Tlower

0

λ(t)dt

]
− exp

[
−

∫ Tupper

0

λ(t)dt

]
.

• Derivatives of the log-likelihood become much more complicated for interval censored
survival times.

• Numerical integration techniques have to be used in both cases.

• Piecewise constant time-varying covariates and left truncation can easily be included.
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Discussion

• Empirical Bayesian treatment of complex geoadditive regression models:

– Based on mixed model representation.

– Applicable for a wide range of regression models.

– Does not rely on MCMC simulation techniques.

⇒ No questions on convergence and mixing of Markov chains, no hyperpriors.

– Closely related to penalised likelihood estimation in a frequentist setting.

• Future work:

– Extended modelling for categorical responses, e.g. based on correlated latent
utilities.

– Multi state models.

– Interval censoring for multi state models.
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