A Group-Sequential Design to Test Efficacy and Inefficiency in Two Subgroups

Darja Tutschkow¹, Astrid Dempfle² & Nina Timmesfeld¹

 ¹Institute of Medical Biometry and Epidemiology, Philipps-University Marburg
² Institute of Medical Informatics and Statistics, Christian Albrechts-University Kiel

ション ふゆ メ リン オ リン しょうく しょう

Contents

- ② Group-sequential Design for Both Subgroups
- Second Second
- 4 Summary and Outlook

- $\bullet\,$ stratified medicine $\to\,$ tailored therapies for patient subgroups based on biomarkers
- $\bullet\,$ predictive biomarkers $\rightarrow\,$ effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\,$ risk of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- $\bullet\,$ predictive biomarkers $\rightarrow\,$ effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\,$ risk of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- $\bullet\,$ predictive biomarkers $\rightarrow\,$ effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- \bullet 'issue of multiplicity' \rightarrow risk of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- $\bullet\,$ predictive biomarkers $\rightarrow\,$ effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\,$ risk of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- $\bullet\,$ predictive biomarkers $\rightarrow\,$ effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\,$ risk of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-

Example

• trial where the benefit for the M^- was overlooked

- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

Motivation

- trial where the benefit for the M^- was overlooked
- study led by the National Surgical Adjuvant Breast and Bowel Project and the North Central Cancer Treatment Group (Romond et al., 2005)
- effect of Trastuzumab for HER2-positive breast cancer patients
- only HER2-positive patients were included in the trial
- some of initially HER2-positve patients, appeared to be HER2-negative
- subsequently tested HER2-negative patients
- "benefit of adjuvant Trastuzumab may not be limited to patients with HER2 amplification" (Paik, Kim & Wolmark, 2008)

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- \bullet predictive biomarkers \rightarrow effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\, risk$ of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-
- study design to test for superiority or inefficiency of a new therapy in both subgroups

- \bullet stratified medicine \rightarrow tailored therapies for patient subgroups based on biomarkers
- \bullet predictive biomarkers \rightarrow effect of a therapy depends on biomarker status
- biomarkers identified as predictive in retrospective or exploratory analyses
- $\bullet\,$ 'issue of multiplicity' $\to\, risk$ of false positive findings
- biomarker-negative subgroup (M^-) not included in later phase III trail \rightarrow no statistically confirmed evidence of inefficiency in M^-
- study design to test for superiority or inefficiency of a new therapy in both subgroups

ション ふゆ メ リン オ リン しょうく しょう

Group-sequential Design for Both Subgroups

• Assumptions: $X_{Ai}^j \sim \mathcal{N}(\mu_A^j, \sigma^2)$ iid, $X_{Bi}^j \sim \mathcal{N}(\mu_B^j, \sigma^2)$ iid with known σ^2 and $j \in \{+, -\}$

Hypotheses:

$$\begin{split} & H_0^{j,S} : \delta^j \leq 0 \text{ vs. } H_1^{j,S} : \delta^j > 0 \text{ (Superiority)} \\ & H_0^{j,i} : \delta^j \geq \Delta \text{ vs. } H_1^{j,i} : \delta^j < \Delta \text{ (Inefficiency)} \end{split}$$

where $\delta^{j} := \mu_{A} - \mu_{B}$ (difference in treatment effects in subgroup M^{j}) and $\Delta > 0$ (inefficiency margin)

O Restrictions:

- predefined number of interim analyses
- equal amount of patients in each subgroup for each interim analysis

(ロ) (型) (E) (E) (E) (O)

Group-sequential Design for Both Subgroups

- Assumptions: $X_{Ai}^j \sim \mathcal{N}(\mu_A^j, \sigma^2)$ iid, $X_{Bi}^j \sim \mathcal{N}(\mu_B^j, \sigma^2)$ iid with known σ^2 and $j \in \{+, -\}$
- Output Provide A state of the set of the

$$\begin{split} & H_0^{j,S}: \delta^j \leq 0 \text{ vs. } H_1^{j,S}: \delta^j > 0 \text{ (Superiority)} \\ & H_0^{j,l}: \delta^j \geq \Delta \text{ vs. } H_1^{j,l}: \delta^j < \Delta \text{ (Inefficiency)} \end{split}$$

where $\delta^j := \mu_A - \mu_B$ (difference in treatment effects in subgroup M^j) and $\Delta > 0$ (inefficiency margin)

3 Restrictions:

- predefined number of interim analyses
- equal amount of patients in each subgroup for each interim analysis

(ロ) (型) (E) (E) (E) (O)

Group-sequential Design for Both Subgroups

- Assumptions: $X_{Ai}^j \sim \mathcal{N}(\mu_A^j, \sigma^2)$ iid, $X_{Bi}^j \sim \mathcal{N}(\mu_B^j, \sigma^2)$ iid with known σ^2 and $j \in \{+, -\}$
- Output Provide A state of the set of the

$$\begin{split} & H_0^{j,S}: \delta^j \leq 0 \text{ vs. } H_1^{j,S}: \delta^j > 0 \text{ (Superiority)} \\ & H_0^{j,l}: \delta^j \geq \Delta \text{ vs. } H_1^{j,l}: \delta^j < \Delta \text{ (Inefficiency)} \end{split}$$

where $\delta^j := \mu_A - \mu_B$ (difference in treatment effects in subgroup M^j) and $\Delta > 0$ (inefficiency margin)

- Restrictions:
 - predefined number of interim analyses
 - equal amount of patients in each subgroup for each interim analysis

・ロト (雪) (ヨ) (ヨ) (コ) ()

Hierarchical Testing

- first intermin analysis:
 - testing superiority in ${\cal M}^+$ and inefficiency in ${\cal M}^-$
 - if one of either hypotheses is rejected, test it in the other subgroup
- following interim analyses:
 - testing superiority in M^+ and inefficiency in M^- as long as no hypothesis is rejected
 - testing both hypothesis in a subgroup if a hypothesis got rejected in the other subgroup

・ロト (雪) (ヨ) (ヨ) (コ) ()

Hierarchical Testing

- first intermin analysis:
 - testing superiority in ${\cal M}^+$ and inefficiency in ${\cal M}^-$
 - if one of either hypotheses is rejected, test it in the other subgroup
- following interim analyses:
 - testing superiority in M^+ and inefficiency in M^- as long as no hypothesis is rejected
 - testing both hypothesis in a subgroup if a hypothesis got rejected in the other subgroup

Hierarchical Testing - Example

k = 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hierarchical Testing - Example

э

・ロト ・聞と ・ヨト ・ヨト

э

Hierarchical Testing - Example

э.

Hierarchical Testing - Example

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ……

э.

Hierarchical Testing - Example

・ロト ・聞ト ・ヨト ・ヨト

э.

Hierarchical Testing - Example

Hierarchical Testing - Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

・ロト ・聞と ・ヨト ・ヨト

臣

Hierarchical Testing - Example

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Hierarchical Testing - Example

Hierarchical Testing - Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Simulation

- rejection probabilities for different treatment effects in both subgroups
- expected sample size in both subgroups
- computing the number of required patients N^+ and N^- in M^+ and M^- respectively, such that decision at the last analysis $\rightarrow N^+ = N^- = 2 \cdot 72$
- FWER 5 %
- K=2 analyses
- 10.000 repetitions
- $\Delta = 0.5$
- $\sigma^2 = 1$

Motivation

Results

δ^+	δ^{-}	$H_0^{+,S}$	$H_{0}^{+,I}$	$H_0^{-,I}$	$H_0^{-,S}$	$\mathbb{E}(N^+)$	$\mathbb{E}(N^{-})$
0	Δ	0.025	0.024	0.025	0.024	142	142
0	2Δ	0.025	0	0	0.025	143	143
0	0	0.024	0.963	0.984	0	100	88
Δ	Δ	0.986	0	0.025	0.962	88	100
Δ	0	0.979	0.021	0.980	0.020	88	88
2Δ	0	1	0	0.977	0.023	72	87
2Δ	2Δ	1	0	0	1	72	72

$$\begin{split} & \mathcal{H}_{0}^{j,S}: \delta^{j} \leq 0 \text{ vs. } \mathcal{H}_{1}^{j,S}: \delta^{j} > 0 \text{ (Superiority)} \\ & \mathcal{H}_{0}^{j,l}: \delta^{j} \geq \Delta \text{ vs. } \mathcal{H}_{1}^{j,l}: \delta^{j} < \Delta \text{ (Inefficiency); } \Delta = 0,5 \end{split}$$

Motivation

Results

δ^+	δ^{-}	$H_0^{+,S}$	$H_{0}^{+,I}$	$H_0^{-,I}$	$H_0^{-,S}$	$\mathbb{E}(N^+)$	$\mathbb{E}(N^{-})$
0	Δ	0.025	0.024	0.025	0.024	142	142
0	2Δ	0.025	0	0	0.025	143	143
0	0	0.024	0.963	0.984	0	100	88
Δ	Δ	0.986	0	0.025	0.962	88	100
Δ	0	0.979	0.021	0.980	0.020	88	88
2Δ	0	1	0	0.977	0.023	72	87
2Δ	2Δ	1	0	0	1	72	72

$$\begin{split} & \mathcal{H}_{0}^{j,S}: \delta^{j} \leq 0 \text{ vs. } \mathcal{H}_{1}^{j,S}: \delta^{j} > 0 \text{ (Superiority)} \\ & \mathcal{H}_{0}^{j,l}: \delta^{j} \geq \Delta \text{ vs. } \mathcal{H}_{1}^{j,l}: \delta^{j} < \Delta \text{ (Inefficiency); } \Delta = 0,5 \end{split}$$

Motivation

Results

δ^+	δ^{-}	$H_0^{+,S}$	$H_{0}^{+,I}$	$H_0^{-,I}$	$H_0^{-,S}$	$\mathbb{E}(N^+)$	$\mathbb{E}(N^{-})$
0	Δ	0.025	0.024	0.025	0.024	142	142
0	2Δ	0.025	0	0	0.025	143	143
0	0	0.024	0.963	0.984	0	100	88
Δ	Δ	0.986	0	0.025	0.962	88	100
Δ	0	0.979	0.021	0.980	0.020	88	88
2Δ	0	1	0	0.977	0.023	72	87
2Δ	2Δ	1	0	0	1	72	72

$$\begin{split} & H_0^{j,S}: \delta^j \leq 0 \text{ vs. } H_1^{j,S}: \delta^j > 0 \text{ (Superiority)} \\ & H_0^{j,l}: \delta^j \geq \Delta \text{ vs. } H_1^{j,l}: \delta^j < \Delta \text{ (Inefficiency); } \Delta = 0,5 \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Summary and Outlook

- group-sequantial design to test for superiority and inefficiency for both subgroups for normally distributed data
- next steps:
 - account for different group sizes
 - extension for survival data
- at some point: add more flexibility, e.g.
 - start with the full set, switch to hierarchical procedure and the other way around
 - increase or reduce number of interim analyses
 - change test statistic or outcome measure during the course of the trail, etc. → CRP-method (Müller & Schäfer)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Summary and Outlook

- group-sequantial design to test for superiority and inefficiency for both subgroups for normally distributed data
- next steps:

 - account for different group sizes
 - extension for survival data
- at some point: add more flexibility, e.g.
 - start with the full set, switch to hierarchical procedure and the
 - increase or reduce number of interim analyses
 - change test statistic or outcome measure during the course of

(ロ) (型) (E) (E) (E) (O)

Summary and Outlook

- group-sequantial design to test for superiority and inefficiency for both subgroups for normally distributed data
- next steps:
 - account for different group sizes
 - extension for survival data
- at some point: add more flexibility, e.g.
 - start with the full set, switch to hierarchical procedure and the other way around
 - increase or reduce number of interim analyses
 - change test statistic or outcome measure during the course of the trail, etc. → CRP-method (Müller & Schäfer)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you for your attention! Questions?

Thank you for your attention! Questions?

