
Multiplicity issues in multistate models for
recurrent event data subject to a competing

terminal event with an application to
cardiovascular disease

Stella Preussler, Katharina Ingel, Harald Binder, Antje Jahn

Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI)
University Medical Center of the Johannes Gutenberg-University Mainz

26.06.2015



Heart failure hospitalizations in CHARM-Preserved trial

0 2 4 6 8 10 12 14

number of hospitalizations

pa
tie

nt
s 

(%
)

0
5

10
83

2515

299

111

48
22 13 5 4 2 2 0 0 0 1 1

Yusuf S et al. (2003): Effects of candesartan in patients with chronic heart
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In 3023 patients:
340 cardiovascular deaths
937 hospitalizations
- 508 first events
- 429 recurrent events

Yusuf S et al. (2003): Effects of candesartan in patients with chronic heart
failure and preserved left-ventricular ejection fraction: the CHARM-Preserved
Trial. Lancet 2003;362:777-781.

Multiplicity in multistate models for recurrent and competing event data 3



Heart failure hospitalizations in CHARM-Preserved trial
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In 3023 patients:
340 cardiovascular deaths
937 hospitalizations
- 508 first events
- 429 recurrent events

Composite endpoint of cardiovascular death and heart failure
hospitalization
Inclusion of recurrent events in analysis
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Potential sequentially rejective multiple test procedures
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Proportional hazards Markov multistate model

S H1 H2 H3

D D D

𝜆H (t) 𝜆H (t) 𝜆H (t)

𝜆D (t) 𝜆D(t) 𝜆D(t)

...

...

where

𝜆H(t) = 𝜆0H(t) exp(𝛽Hx)
𝜆D(t) = 𝜆0D(t) exp(𝛽Dx)

corresponding partial likelihood

PLMS(𝛽H , 𝛽D) =
∏︁

hosp j

exp(𝛽Hxj)∑︀
i∈RR

(j)
exp(𝛽Hxi)

·
∏︁

death k

exp(𝛽Dxk)∑︀
i∈RD

(k)
exp(𝛽Dxi)
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Investigation of single endpoints

S H1 H2 H3

D D D

𝜆H (t) 𝜆H (t) 𝜆H (t)

𝜆D (t) 𝜆D(t) 𝜆D(t)

...

...

where

𝜆H(t) = 𝜆0H(t) exp(𝛽Hx)
𝜆D(t) = 𝜆0D(t) exp(𝛽Dx)

corresponding partial likelihood

PLMS(𝛽H , 𝛽D) =
∏︁

hosp j

exp(𝛽Hxj)∑︀
i∈RR

(j)
exp(𝛽Hxi)

·
∏︁

death k

exp(𝛽Dxk)∑︀
i∈RD

(k)
exp(𝛽Dxi)

⇒ Investigation of HD (𝛽D) and HH (𝛽H) within the
multistate model
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Investigation of composite endpoint

Andersen-Gill model:
S CE1 CE2 ...𝜆0

CE (t) exp (𝛽CE x) 𝜆0
CE (t) exp (𝛽CE x)

PLCE (𝛽CE ) =
∏︁

CE event j

exp(𝛽CE xj)∑︀
i∈R(j)

exp(𝛽CE xi)

=
∏︁

hosp j

exp(𝛽CE xj)∑︀
i∈RH

(j)
exp(𝛽CE xi)

·
∏︁

death k

exp(𝛽CE xk)∑︀
i∈RD

(k)
exp(𝛽CE xi)

= PLMS(𝛽CE , 𝛽CE )

We relax the constraint on 𝛽H = 𝛽D = 𝛽CE by replacing HCE
0

by HG
0 := {𝛽D = 𝛽H = 0} investigated by PLMS(𝛽H , 𝛽D)
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What is gained or lost in terms of power?
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Multiplicity in multistate models for recurrent and competing event data 12



What is gained or lost in terms of power?

HCE

HD

HH

⇒𝛼

0

0

0.5

0.5

1 1 HG

HD

HH

𝛼

0

0

1

1

HD = {𝛽D = 0}
HH = {𝛽H = 0}
HCE = {𝛽CE = 0|𝛽H = 𝛽D}
HG = {𝛽H = 𝛽D = 0}

⇒ Investigate by simulation

Multiplicity in multistate models for recurrent and competing event data 12



What is gained or lost in terms of power?

HCE

HD

HH

⇒𝛼

0

0

0.5

0.5

1 1 HG

HD

HH

𝛼

0

0

1

1

HD = {𝛽D = 0}
HH = {𝛽H = 0}
HCE = {𝛽CE = 0|𝛽H = 𝛽D}
HG = {𝛽H = 𝛽D = 0}

⇒ Investigate by simulation

Multiplicity in multistate models for recurrent and competing event data 12



Simulating data

Subjects followed for 3 years with 10% censoring

X fixed B(1, 0.5)-distributed covariate coding treatment

Transition hazards

𝜆H(t|z , x) = 𝜆H · 𝜈 · t𝜈−1 · z · exp(𝛽Hx)
𝜆D(t|z , x) = 𝜆D · 𝜈 · t𝜈−1 · z · exp(𝛽Dx)

2 Simulation settings
I 𝛽H = log(0.7) = 𝛽D („CE-friendly setting“)
I 𝛽H = log(0.7), 𝛽D = 0 (CHARM-Preserved)
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Results: 𝛽H = log(0.7) = 𝛽D („CE-friendly“)
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Results for 𝛽H = log(0.7), 𝛽D = 0 (CHARM-Preserved)
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Summary

Multiple testing procedures can be improved by the use of
multistate models
Try it yourself: Download from GitHub
devtools::install_github(“katharinaingel/simrec“)
simres <- simreccomp(N,fu.min,fu.max,cens.prob=0,...)

Contact: spreussl@students.uni-mainz.de
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Settings of simulation data

𝜈 = 0.5 shape parameter for weibull hazard for hosp. and death
scale parameter for weibull hazard

I 𝜆H = 30.5 * #events
#patients = 30.5 * 547

1509 = 0.2092847
I 𝜆D = 0.1

frailty term: z ∼ Γ(𝜃 = 0.5)
nsim = 1000
N = 1000
P(death ≤ 3) = 1 − exp(−0.1 * 30.5) = 0.1590349
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The CHARM-Preserved Trial

„Between March, 1999, and July, 2000, we randomly assigned 3023
patients candesartan (n = 1514, target dose 32 mg once daily) or
matching placebo (n = 1509) [double-blind]. Patients had New York
Heart Association functional class II-IV CHF and LVEF higher than
40%.“
„...we tested the hypothesis that another inhibitor of the
renin-angiotensin system, an angiotensin-receptor blocker,
candesartan, would be of benefit in patients with CHF and preserved
LVEF. The primary goal was to assess the effects of candesartan on
the composite outcome of cardiovascular mortality or admission to
hospital for worsening CHF.“
„Candesartan has a moderate impact in preventing admissions for
CHF among patients who have heart failure and LVEF higher than
40%.“

Yusuf S et al. (2003): Effects of candesartan in patients with chronic heart
failure and preserved left-ventricular ejection fraction: the CHARM-Preserved
Trial. Lancet 2003;362:777-781.
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Results: Power of HD in simulation
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CE model = MS model with constraint

Multistate model
H0 H1 H2 H3

D D D

𝜆H (t) 𝜆H (t) 𝜆H (t)

𝜆D (t) 𝜆D(t) 𝜆D(t)

𝜆H (t) = 𝜆0H (t) exp(𝛽H x)

𝜆D (t) = 𝜆0D(t) exp(𝛽Dx)

...

...

Composite endpoint model
CE0 CE1 CE2 CE3

𝜆CE (t) 𝜆CE (t) 𝜆CE (t)
𝜆C E(t) = 𝜆0CE (t) exp(𝛽CE x)...

Comparison of MS and CE model:

𝜆0CE (t) exp(𝛽CE x) = 𝜆CE (t) =! 𝜆H(t) + 𝜆D(t)
= 𝜆0H(t) exp(𝛽Hx) + 𝜆0D(t) exp(𝛽Dx)
= 𝛽H=𝛽D=𝛽CE [𝜆0H(t) + 𝜆0D(t)] exp(𝛽CE x)

⇒ MS model = CE model with constraint 𝛽H = 𝛽D = 𝛽CE
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Simulation algorithm

H0 H1 H2 H3

D D D

...

...

total time
U1 U2 U3

T0 = 0 T1 T2 T3

𝜆H (t) 𝜆H (t) 𝜆H (t)

𝜆D(t) 𝜆D (t) 𝜆D (t)

1. Simulate inter-event time UH1

2. Recursive step: Simulate inter-event time UHi+1 conditional on
Ti

UHi ,Hi+1 |Ti = ti ∼ Λ−1
H,ti

(−log(A)), A ∼ U[0, 1]
3. Analogue:

UDi ,Di+1 |Ti = ti ∼ Λ−1
D,ti

(−log(A)), A ∼ U[0, 1]
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Closed form solutions

Model ΛH(t) Λ−1
H,ti

(u)

Exponential 𝜆t u
𝜆

Weibull 𝜆t𝜈 𝜈

√︂(︁u+𝜆·t𝜈
i

𝜆

)︁
− ti

Gompertz 𝜆
𝛼(exp(𝛼t) − 1) 1

𝛼 log
(︀

𝛼
𝜆 u + exp(𝛼ti)

)︀
− ti
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