

Nuisance-parameter based sample size reestimation in adaptive enrichment designs with an application in major depression

Marius Placzek, Tim Friede

Department of Medical Statistics, University Medical Center Göttingen, Germany

BMBF project (BundesMinisterium für Bildung und Forschung) "BIOSTATISTISCHE METHODEN ZUR EFFIZIENTEN EVALUATION VON INDIVIDUALISIERTEN THERAPIEN (BIMIT)".

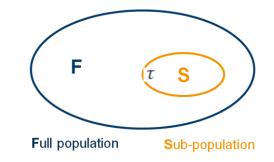
Nuisance-parameter based sample size reestimation in adaptive enrichment designs, Marius Placzek, 24.06.2015 © UMG

Motivating examples in major depression

Combination of baseline variables to predict treatment response

- Frank et. al (2011) compared a pharmacotherapy and a psychotherapy in a randomized controlled study (n=318)
- 17-item Hamilton Depression Rating Scale (HDRS-17) over 12 weeks as efficacy endpoint
- A number of baseline variables which are predictive of treatment outcome were identified and combined to an *optimal moderator* of treatment effect (Kraemer HC, 2013)
- For patients above (below) a certain threshold of the optimal moderator psychotherapy was superior (inferior) to pharmacotherapy

Serum BDNF levels as predictor of treatment response


- A number of small uncontrolled studies identified baseline serum levels of brain derived neurotrophic factors (sBDNF) to predict treatment response to various pharmacological treatments (including duloxetine)
- HDRS-17 over 6 weeks (Mikoteit et al, 2014) or 8 weeks (Wolkowitz et. al, 2011)

In both examples the identified subgroups need to be confirmed in a RCT!

Adaptive Enrichment Design

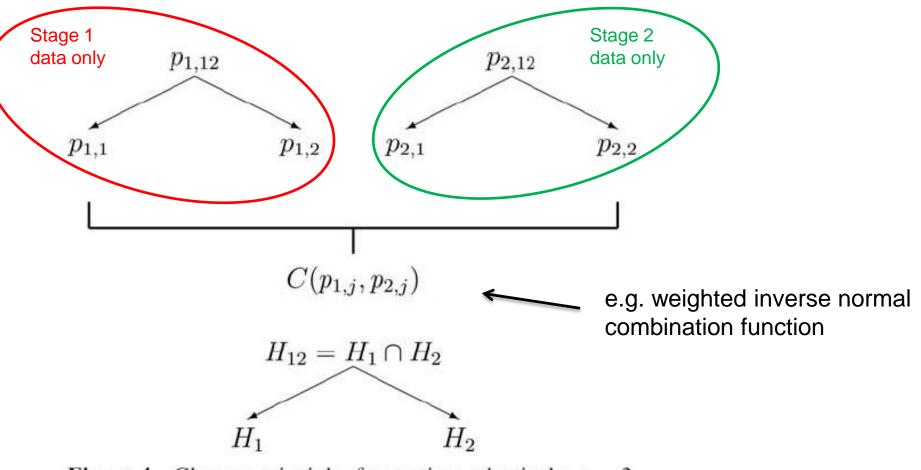
Basic concept:

- Stage 1: Recruit patients from full population (F)
- Interim analysis: make the decisions on ...
 - whether trial is stopped for futility
 - if trial is continued, decide whether recruitment in Stage 2 is from full population (F) or subpopulation (S) (enrichment)
 - ▷ e.g. epsilon-decision rule (Kelly et al 2005)
 - testing strategy in final analysis
- Final analysis: test for an effect in F and/ or S

Hypotheses and Test Statistics

4

- Normal distributed endpoints
- individual hypotheses $H_0^{\{F\}}$ (no effect in full population)


 $H_0^{\{S\}}$ (no effect in subpopulation)

- intersection hypothesis $H_0^{\{F,S\}}$ (no effect in full and subpopulation)
- ▷ standardized test statistics $Z^{\{F\}} = \sqrt{\frac{n}{2}} \frac{\bar{X}_F^T \bar{X}_F^P}{\hat{\sigma}_F}, \ Z^{\{S\}} = \sqrt{\frac{n\hat{\tau}}{2}} \frac{\bar{X}_S^T \bar{X}_S^P}{\hat{\sigma}_S}$
 - \triangleright depend on estimates of nuisance parameters σ_F^2 , σ_S^2 , τ

> under $H_0^{\{F,S\}}$

$$\begin{pmatrix} Z^{\{F\}} \\ Z^{\{S\}} \end{pmatrix} \stackrel{\sim}{\sim} MN\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{\tau} \\ \sqrt{\tau} & 1 \end{pmatrix} \right)$$

Combination Test and Closure Principle

UNIVERSITÄTSMEDIZIN GÖTTINGEN

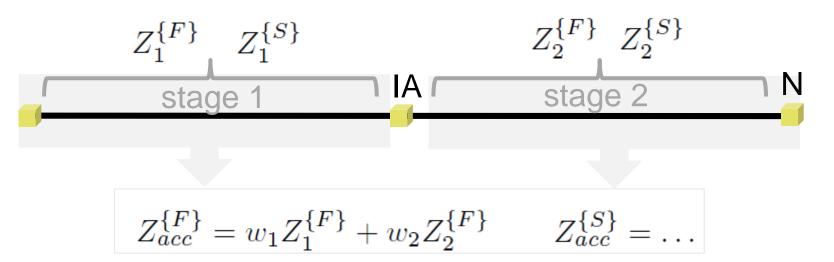

5

Figure 4 Closure principle for testing adaptively n = 2 null hypotheses H_1 and H_2 .

Figure taken from Bretz el al (2006) Biometrical Journal

6

Conditional Error Function Approach

use Stage 1 data to calculate the conditional error

$$CE = \mathbf{P}\left(\text{reject } H_0(Z_{acc}^{\{F\}}, Z_{acc}^{\{S\}}) | z_1^{\{F\}}, z_1^{\{S\}}\right)$$

- after Stage 2 test with the accumulated data to the level of the conditional error
- ▷ For each individual hypothesis \rightarrow apply closed testing procedure

Sample Size Calculation

under the alternative

$$\begin{pmatrix} Z^{\{F\}} \\ Z^{\{S\}} \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \sqrt{\frac{n}{2}} \frac{\Delta_F}{\sigma_F} \\ \sqrt{\frac{n\tau}{2}} \frac{\Delta_S}{\sigma_S} \end{pmatrix}, \begin{pmatrix} 1 & \sqrt{\tau} \\ \sqrt{\tau} & 1 \end{pmatrix} \right)$$

1 1

- $G_{\mathcal{N}(\boldsymbol{\delta},\boldsymbol{V})}$ denote the distribution function of $\mathcal{N}(\boldsymbol{\delta},\boldsymbol{V})$ \triangleright let and $m{z}_{\mathcal{N}(\mathbf{0},m{V}),1-lpha}$ the (1-lpha)-equicoordinate quantile of $\mathcal{N}(\mathbf{0},m{V})$
- use estimates of nuisance parameters and effect sizes, e.g. based on previous \triangleright studies, to calculate the initial sample size via

$$N_{init} = \min n, \text{ s.t. } 1 - G_{\mathcal{N}(\boldsymbol{\delta}, \boldsymbol{V})}(\boldsymbol{z}_{\mathcal{N}(\boldsymbol{0}, \boldsymbol{V}), 1-\alpha}) \ge 1 - \beta$$

Problems?

 \triangleright

UNIVERSITÄTSMEDIZIN GÖTTINGEN

	Study or subgroup	Duloxetine		SSRIs		Dífferer	
		Ν	Mean(SD)	Ν	Mean(SD)	IV,Random,9	
	l versus Escitalopram Khan 2007 (SCT-MD-23)	126	-9.6 (7.6)	136	-11.1 (6.9)	-	
	Nierenberg 2007 (HMCR)	273	-7.61 (6.93)	274	-7.22 (6.62)	+	
	Wade 2007	146	-11.51 (6.3)	141	-12.77 (6.3)	-	
IDRS	Subtotal (95% CI)	545		551		•	
	Heterogeneity: Tau ² = 0.02; Chi Test for overall effect: Z = 1.04 2 versus Fluoxetine Goldstein 2002 (HMAQ A)		-7.87 (6.98)	-37%	-6.09 (7.55)		
	ID#3327 (HMAQ B)	81	-6.25 (7.12)	37	-7.05 (6.64)		
pressive	Subtotal (95% CI)	149		70		+	
iew)	Heterogeneity: Tau ² = 0.02; Chi ² = 1.53, df = 1 (P = 0.22); I ² = 35% Test for overall effect: Z = 0.32 (P = 0.75) 3 versus Paroxetine						
	Detke 2004 (HMAY A)	93	-11.32 (6.29)	85	-11.06 (5.93)	-	
	Goldstein 2004 (HMAT B)	86	-7.72 (7.67)	84	-6.06 (8.12)		
]	Higuchi 2009a	66	9.8 (5.8)	128	9.6 (6.3)	-	
	ID#4091 (HMAT A)	81	-5.54 (6.68)	87	-6.2 (6.97)		
	Lee 2007 (HMCV)	238	11.73 (4.57)	240	11.94 (4.59)	+	
k 8)	Perahia 2006 (HMAY B)	102	-11.72 (5.78)	97	-10.84 (7)		
£ 8.9'	Subtotal (95% CI)	666		721		+	

example: variance of 17-HDRS outcome

misspecifications of

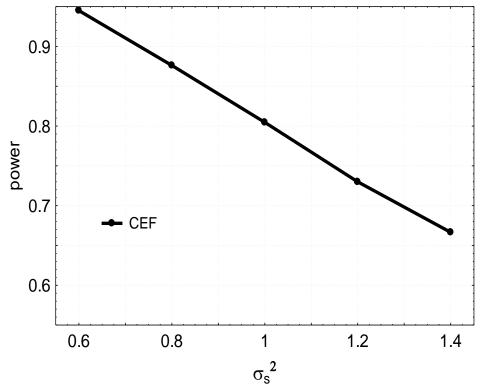
nuisance parameters

▷ Cipriani et al. (2012)

Duloxetine versus other anti-depressive

agents for depression (Review)

The Cochrane Library


Baseline HDRS score	22.3 ± 5.1	
(Mikoteit 2014)	22.0±4.1	

(Wolkowitz 2011)	Escitalopram		
	Baseline ¹	(Week 8)	
HDRS-17	26.1 ± 8.3	13.2 ± 8.9	

Nuisance-parameter based sample size reestimation in adaptive enrichment designs, Marius Placzek, 24.06.2015 © UMG

Problems?

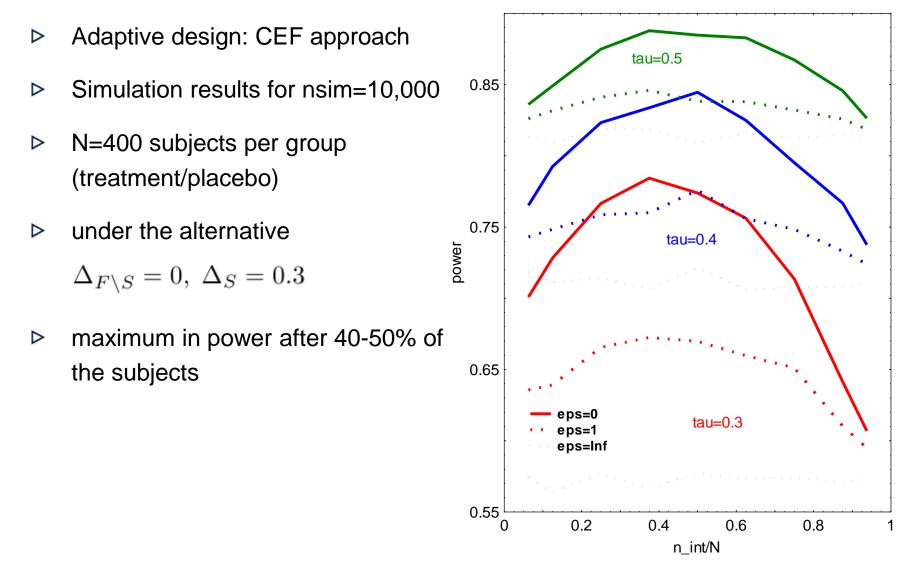
- \triangleright For example here: misspecification of σ_S^2

UNIVERSITÄTSMEDIZIN GÖTTINGEN

- motivation for sample size
 recalculation procedure
 - Internal Pilot Study Design (Wittes & Brittain, 1990)

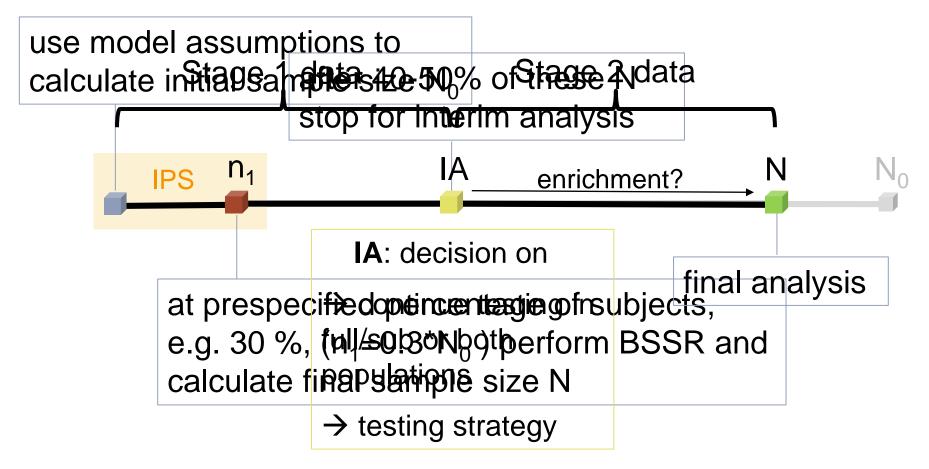
IPS design with Blinded Review

 \triangleright here: nuisance parameters σ_F^2 , σ_S^2 and τ

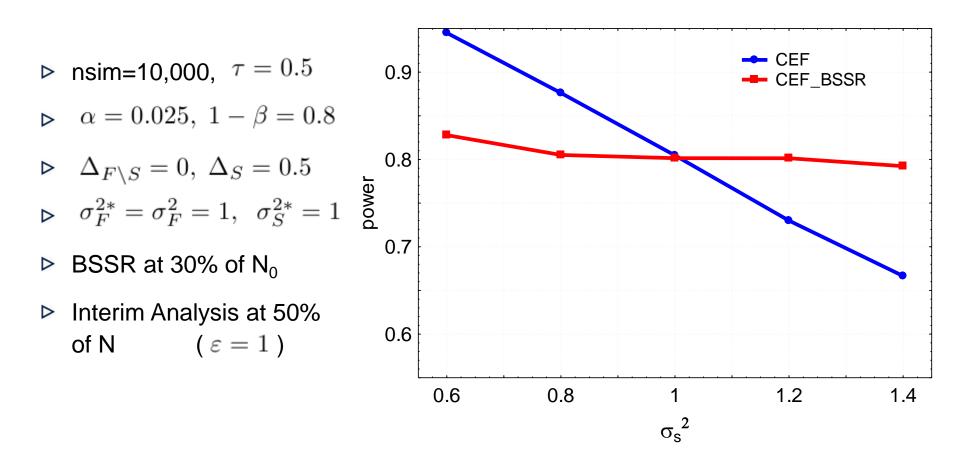

- F
 S

 Full population
 Sub-population
- ▷ after n₁=p* N₀ subjects per group (treatment/control):
 - blinded reestimation via "lumped variance"

$$\hat{\sigma}_{F,OS}^2$$
, $\hat{\sigma}_{S,OS}^2 = \frac{1}{2n_{1S}-1} \sum_{i \in \{T,C\}} \sum_{j=1}^{n_{1S}} (X_{ij} - \overline{X}_S)^2$, $\hat{\tau} = n_{1S}/n_1$


- here OS=OneSample means no unblinding of treatment/control group
- plug in new estimates and recalculate sample size N= n₁+n₂ for final analysis

Optimal Timepoint for Interim Analysis?



Combine BSSR and Adaptive Enrichment Methods

Combine BSSR and Adaptive Enrichment Methods

Combine BSSR and Adaptive Enrichment Methods

type-I-error rates

▷ nsim=100,000,
$$au^*=0.4$$

$$\sigma_F^2 = \sigma_S^2 = \sigma_F^{2*} = \sigma_S^{2*} = 1$$

- $\triangleright \alpha = 0.025$
- $\triangleright \ \Delta_{F \setminus S} = \Delta_S = 0$
- ▶ BSSR at 30% of N₀
- Interim Analysis at 50% of N ($\varepsilon = 1$)

tau	N _o	Ν	CTSD	CEF
0.3	662	843	0.02435	0.02509
0.4	662	664	0.02491	0.02581
0.5	662	537	0.02426	0.02489
0.3	371	475	0.02487	0.02528
0.4	371	375	0.02426	0.02528
0.5	371	303	0.02506	0.02516
0.3	237	305	0.02561	0.02594
0.4	237	241	0.02484	0.02558
0.5	237	194	0.02462	0.02500
0.3	169	213	0.02531	0.02564
0.4	169	168	0.02566	0.02578
0.5	169	136	0.02553	0.02583

Conclusions & Discussion

- Combination of BSSR and Adaptive Enrichment Methods leads to robust and flexible design
- increasing computational time due to computational complexity with increasing number of subgroups (simulations in planning stage)
- extension to nonnormal endpoints, e.g. count data
- include modeling of drop-outs

References

- Friede T, Parsons N, Stallard N (2012) A conditional error function approach for subgroup selection in adaptive clinical trials. Statistics in Medicine 31: 4309-4320
- Wittes J, Brittain E (1990). The role of internal pilot studies in increasing the efficiency of clinical trials. Statistics in Medicine 9: 65–72.
- Brannath W, Zuber E, Branson M, Bretz F, Gallo P, Posch M, Racine-Poon A (2009) Confirmatory adaptive designs with Bayesian decision tools for a targeted therapy in oncology. Statistics in Medicine 28:1445–1463
- Bauer P, Köhne K (1994) Evaluation of experiments with adaptive interim analyses. Biometrics 50: 1029-1041
- Bretz F, Schmidli H, König F, Racine A, Maurer W (2006) Confirmatory seamless phase II/III clinical trials with hypothesis selection at interim: general concepts. Biometrical Journal 48: 623-634

References

- Frank E et al. (2011). Predictors and moderators of time to remission of major depression with interpersonal psychotherapy and SSRI pharmacotherapy.
 Psychological Medicine 41(1): 151–162.
- Kraemer HC (2013). Discovering, comparing, and combining moderators of treatment on outcome after randomized clinical trials: a parametric approach. Statistics in Medicine 32: 1964-1973
- Mikoteit T et al. (2014). High baseline BDNF serum levels and early psychopathological improvement are predictive of treatment outcome in major depression. Psychopharmacology 231: 2955-2965
- Wolkowitz OM (2011). Serum BDNF levels before treatment predict SSRI response in depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry 35: 1623-1630
- Cipriani A et al. (2012). Duloxetine versus other anti-depressive agents for depression (Review). The Cochrane Library 10