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“Modern” multiple testing procedures

◮ Recently many multiple testing procedures that address

specific multiplicity issues in clinical trials have been

proposed.
◮ Reflect the contextual relationships between hypotheses in

the inference procedure (e.g. test secondary hypotheses

only if primary hypotheses are rejected)
◮ Examples are Fixed Sequence Test, Fallback Test,

Gatekeeping Tests, ...
◮ Especially graph-based multiple testing procedures:

◮ can be easily tailored to the problem at hand,
◮ make the guiding principle behind the procedures more

transparent,
◮ help to communicate the procedures to clinicians and

regulators.

BRETZ, MAURER, BRANNATH, POSCH (2009)
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Graph-based multiple testing procedures

Notation

◮ H1, . . . ,Hm : m null hypotheses.

◮ p1, . . . , pm : m elementary p-values

◮ Initial significance level α1, ..., αm, α =
∑m

i=1 αi

◮ Weighted directed graph with transition matrix

G = (gij)i,j∈{1,...,m}

Graph-based multiple testing

1. Reject any hypothesis for which pi ≤ αi

2. Reallocate significance levels αj = αj + gijαi

3. Update the graph

4. Goto 1
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Control of the FWE

Theorem BRETZ ET. AL (’09)

The initial levels α, the graph and algorithm define a unique

multiple testing procedure controlling strongly the FWE at level

α.

Proof:

◮ The graph and algorithm define weighted Bonferroni tests

for all intersection hypotheses HJ =
⋂

j∈J Hj , J ⊂ {1, ...,m}

with local significance levels αi(J) with α ≥
∑k

i=1 αi(J).

◮ The algorithm is a short cut for the resulting closed test.

◮ Provides strong control of the family wise error rate

MARCUS ’76
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Extensions

◮ Instead of performing a weighted Bonferroni test to each
intersection hypothesis other weighted tests may be used:

1. Simes or parametric tests∗ BRETZ ET AL (’11)

2. Group sequential tests MAURER & BRETZ (’13)

3. Adaptive combination tests SUGITANI ET AL. (’13)

4. Adaptive tests based on partial conditional error rates∗

KLINGLMUELLER ET AL. (’14)

◮
∗ If the intersection tests are not consonant no general

short-cut exists and the whole closed test must be

performed!

◮ Here we extend adaptive graph-based multiple testing

procedures (4) to also permit early rejection for success.
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Example: 2 primary, 2 secondary hypotheses

New drug for the treatment of multiple sclerosis

◮ Two active treatment arms (high dose given once per day,

low dose given 3 times per day), one placebo control arm

◮ Primary endpoint annualized relapse rate: H1,H2

◮ Secondary endpoint number of lesions in the brain: H3,H4

Testing Strategy

◮ Rejection of secondary hypotheses is only of interest if at

least one of the primary hypotheses can be rejected

◮ Assuming equal efficacy the two treatments should have

same probability of success.
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Example: Tailoring the procedure

H1

α

2

H2

α

2

1. Split α equally between primary hypotheses

2. Give no α to secondary hypotheses

3. Reallocate significance levels to secondary hypotheses

4. Reallocate significance levels between treatment arms 7
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Example: fixed sample test, α = 0.025
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1. Perform the trial with a fixed sample size of N patients/arm

2. Control FWE at α = .025 one-sided

3. Observe: p1 = 0.004, p2 = 0.017, p3 = 0.011, p4 = 0.032

4. Reject H1, 8
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Group sequential design

◮ Instead of performing the trial with a fixed sample size, we

perform two pre-planned interim analyses.

◮ After 1/3 ∗ N and 2/3 ∗ N observations per group have

been collected, data will be unblinded.

◮ Hypotheses are rejected early if interim test statistics

(cumulative p-values p
(k)
i ) cross an early rejection

boundary (gsB
(k)
i (αi)).

◮ Use O’Brien Fleming type boundaries (O’BF) for the

primary hypotheses, Pocock (Poc) type boundaries for the

secondary hypotheses. (GLIMM ET AL. (2010))

◮ Using these types of boundaries we can apply the

graphical approach at each interim analysis. MAURER &

BRETZ (2013).
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Group sequential boundaries

◮ We compute boundaries for all different local significance

levels that can appear in the graph to get critical values

(adjusted significance levels) for each interim/final analysis.

◮ Boundaries are computed based on Poc/O’BF

type-spending function using R-package ldbounds

Type local-α Stage 1 Stage 2 Stage 3

O’BF 0.0125 0.00002 0.0022 0.0118

Pocock 0.0125 0.0057 0.0052 0.0050

O’BF 0.025 0.0001 0.006 0.0231

Pocock 0.025 0.011 0.011 0.011
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Example: group sequential design - Stage 1

Type local-α Stage 1 Stage 2 Stage 3
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1. Trial with three equal sized stages and at most N patients per group.

2. After Stage 1 (Stage 2) we have N/3 (2N/3) observations per arm.

3. Interim 1 observe: p
(1)
1 = 0.09, p

(1)
2 = 0.17, p

(1)
3 = 0.13, p

(1)
4 = 0.04

4. Interim 2 observe: p
(2)
1 = 0.001, p

(2)
2 = 0.07, p

(2)
3 = 0.021, p

(2)
4 = 0.22
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Example: group sequential design - Stage 2
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Comments on group sequential design

◮ Having rejected the primary hypothesis H1 early, we can
either:

1. Continue recruiting to the corresponding treatment arm;

2. Stop recruiting to the corresponding treatment arm;

◮ First option means there are little savings from early

rejection as the full number of patients has to be recruited

◮ First option also means that one could gather second

stage observations for the primary endpoint - which may

not be consistent with the first stage outcome

◮ Second option abandons any chance to reject the

secondary hypothesis H3

◮ Second option also means that local significance levels of

H1 and H3 cannot be allocated to H2 and subsequently H4
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Example: final analysis

Type local-α Stage 1 Stage 2 Stage 3

O’BF 0.0125 0.00002 0.0022 0.0118

Pocock 0.0125 0.0057 0.0052 0.0050

O’BF 0.025 0.0001 0.006 0.0231

Pocock 0.025 0.011 0.011 0.011

H1 H2

?

H3 H4

?

1 1

1

1

◮ If we knew that we can not reject H3, at the end we had to test H2 using

O’BF boundary at level 0.0125 (i.e. 0.0118).

◮ If we knew that we can reject H3 we could reallocate the α and test H2

using O’BF boundary at level 0.025.

◮ We extend adaptive graph-based multiple testing procedures (

KLINGLMUELLER ET AL. (2014)) to offer an intermediate solution
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Adaptive graph-based multiple testing (ctd.)

◮ Assume we stop recruiting for Treatment 1
◮ We use the Stage 1 and 2 observations to compute partial

conditional error rates.

Aj(J) = PHJ

[

p
(3)
j ≤ gsB

(k)
i (αi(J)) |First-,Secondstage Data

]

◮ The sum BJ =
∑

j∈J Aj(J) provides a conditional ’level’ for

an adapted test of HJ based on (independent) third stage

data ( KLINGLMUELLER ET AL. (2014)).
◮ In the final analysis apply a weighted Bonferroni test at

level BJ to HJ based on Stage 3 data alone.
◮ We can also modify the Stage 3 design - e.g. reallocate

patients of the dropped treatment arm to Treatment 2.
◮ Caveat: In general we need to construct adapted tests for

all 2m − 1 intersection hypotheses HJ =
⋂

i∈J Hi ,

J ⊆ {1, ...,m}
14
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Local significance levels for final closed test

A1(J) A2(J) A3(J) A4(J) BJ

H{4} 0 0 0 0.002 0.002

H{3} 0 0 0.135 0 0.135

H{3,4} 0 0 0.057 0.0003 0.057

H{2} 0 0.086 0 0 0.086

H{2,4} 0 0.086 0 0 0.086

H{2,3} 0 0.033 0.057 0 0.09

H{2,3,4} 0 0.033 0.057 0 0.09

H{1} 1 0 0 0 1

H{1,4} 1 0 0 0.0003 1

H{1,3} 1 0 0 0 1

H{1,3,4} 1 0 0 0.0003 1

H{1,2} 1 0.033 0 0 1.033

H{1,2,4} 1 0.033 0 0 1.033

H{1,2,3} 1 0.033 0 0 1.033

H{1,2,3,4} 1 0.033 0 0 1.033

◮ Partial conditional error rates Aj(J) and sums BJ for all

intersection hypotheses
15
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rejecting H3

◮ Also test H{3,4} at full level B{3,4} 15
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Example: final analysis (ctd.)

◮ Reject H2 if the p-value of an adapted test using only

Stage 3 data falls below 0.087

◮ Reject H4 if the p-value of an adapted test using only

Stage 3 data false below 0.002
◮ Assuming standard normal observations and no sample

size increase this corresponds to critical boundaries

0.0231 for p
(3)
2 and 0.011 for p

(3)
4 - which are just the O’BF

and POC boundaries for Stage 3 at level α

Type local-α Stage 1 Stage 2 Stage 3

O’BF 0.025 0.0001 0.006 0.0231

Pocock 0.025 0.011 0.011 0.011

◮ Assume we observe p
(3)
2 = 0.021 and p

(3)
4 = 0.047

◮ Then we reject H2 but not H4.
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Simulations: Setup

◮ Two treatment arms in comparison to control; 4 elementary

hypotheses

◮ Graph-based procedure as in the case study; one-sided

tests; level α

◮ Standard normal observations, mean vector

(m1,m2,m3,m4).

◮ Correlation between treatment arms 1/2; between

endpoints 1/3.

◮ Only 1 pre-planned interim analysis after 1/2 of

observations have been collected, 100 patients per group

and stage
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Simulation: Tests and selection procedures

◮ Apply group sequential test (gsGMCP) MAURER (’13)

◮ Apply adaptive group sequential test (agsGMCP)

◮ Test each hypothesis using the group sequential test

(Stage2) - stop treatment arms only if the hypotheses for

both endpoints can be rejected

◮ Stop treatment arm if at least the primary hypothesis is

rejected (tapered)

◮ Reallocate sample size to remaining treatment and control

if a treatment is dropped (SSR)

◮ Use O’BF for primary and Poc for secondary hypotheses,

or O’BF for both.
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Simulations: Results

Bounds Method m1 m2 m3 m4 Stage1
P1

Stage2
P1

Stage2
PB

tapered
PB

Stage2
PA

tapered
PA

ASN

O’BF-Poc gsGMCP 0.3 0 0.3 0 11.1 77.8 2.3 2 60.6 58.5 588
agsGMCP 11.2 77.8 2.3 2.3 60.6 58.5 588
SSR 2.3 58.6
gsGMCP 0.3 0.3 0.3 0.3 18.2 89.7 72.1 71.5 76.7 73.2 549
agsGMCP 18.6 89.7 72.1 72.2 76.7 75.9 548
SSR 72.7 76.4

O’BF-O’BF gsGMCP 0.3 0 0.3 0 11.1 77.7 2.3 1.9 65.4 58.9 589
agsGMCP 11.1 77.7 2.3 2.3 65.4 59 589
SSR 2.3 59
gsGMCP 0.3 0.3 0.3 0.3 18 89.5 73.1 72.5 81.2 72.1 558
agsGMCP 18.1 89.5 73.1 73.1 81.2 78.2 556
SSR 73.6 79

◮ More early rejections due to BJ ≥ 1 (Stage1)

◮ Power to reject any primary hypothesis is barely affected

◮ When a treatment is dropped: higher power to reject both (PB)

treatments and both hypotheses in a treatment arm (PA)

◮ Effect of sample size reallocation small (SSR)

◮ Choice of spending function not clear O’BF-O’BF outperforms O’BF-Poc
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Discussion

◮ Using this approach we may perform adaptive design

modifications, e.g. sample size reassessment,

adding/dropping of hypotheses, adding/dropping of interim

analyses

◮ Adaptive interim analyses are not limited to the second to

last stage - however, designing the remaining test (adapted

weights, adapted spending functions, ...) may become

cumbersome

◮ Software will be available in an upcoming version of

R-package gMCP
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