Here HEIN USSELDOR

Martingale methods for the FDR control of multiple tests

Arnold Janssen (joint work with Philipp Heesen and Julia Benditkis)

Mathematical Institute Heinrich-Heine-Universität Düsseldorf, Germany

Köln, Juni 2015

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Introduction: Class-room notes

- Benjamini and Hochberg Theorem
- Dependent Normal Distributions
- Bonferroni adjustment under dependency

2 Martingale Dependence

- Examples of Martingale Dependence
- Inequalities for the FDR
- Sharp Results under Martingale Dependence

Introduction: Class-room notes

Outline

Introduction: Class-room notes

- Benjamini and Hochberg Theorem
- Dependent Normal Distributions
- Bonferroni adjustment under dependency

2 Martingale Dependence

- Examples of Martingale Dependence
- Inequalities for the FDR
- Sharp Results under Martingale Dependence

Martingale methods for the FDR control of multiple tests Introduction: Class-room notes

Notations

 $H_1, ..., H_n$ null-hypotheses $p = (p_1, ..., p_n)$ vector of corresponding p-values $p_{1:n} \leq ... \leq p_{n:n}$ corresponding order statistics $l_0 \subset \{1, ..., n\}, n_0 := |I_0|$ index-set of true null-hypotheses $0 = a_0 < a_1 \leq a_2 \leq ... \leq a_n < 1$ critical values

Step Up (SU) rejection bound

$$a = \sup\{a_i, i = 1, ..., n : p_{i:n} \leq a_{i:n}\}$$

Reject H_i if $p_i \leq a$.

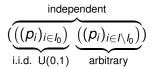
 $R = #\{ \text{ rejected } H_i \}$ $V = #\{ \text{ rejected } H_i, H_i \text{ true} \}.$

Introduction: Class-room notes

Benjamini and Hochberg Theorem

Definition (Basic Independence Model (BI))

We say that p-values $p_1, ..., p_n$ fulfill the Basic Independence Model, if $(p_i)_{i \in I_0}$ are i.i.d. uniformly U(0, 1) distributed and independent from $(p_j)_{i \in I \setminus I_0}$.



Martingale methods for the FDR control of multiple tests Introduction: Class-room notes Benjaminj and Hochberg Theorem

Linear SU

Aim: finite sample FDR control.

Let $\alpha \in (0, 1)$ be given. A SU Procedure with critical values

$$a_i=rac{ilpha}{n},\ i=1,...,n,$$

is called Benjamini and Hochberg (BH) procedure.

Theorem (cf. Benjamini and Hochberg (1995), Benjamini and Yekutieli (2001), Finner and Roters (2001))

Under BI we have
$$FDR = E\left[\frac{V}{\max(R,1)}\right] = \frac{\alpha n_0}{n}$$
.

Introduction: Class-room notes

Benjamini and Hochberg Theorem

A simple Proof of the BH Theorem

A simple proof was proposed by Heesen and J. [2015] and based on Fubini's Theorem. W.I.o.g. let $1 \in I_0$. Define the random variable R^0 by $R^0 = R(0, p_2, ..., p_n)$. Since $V = \sum_{i \in I_0} \mathbf{1}(p_i \leq a)$ we get:

$$FDR = \sum_{i \in I_0} E\left[\frac{\mathbf{1}(p_i \leq \frac{\alpha R}{n})}{\max(R, 1)}\right]$$
$$= n_0 E\left[\frac{\mathbf{1}(p_1 \leq \frac{\alpha R^0}{n})}{R^0}\right] = n_0 E\left[\frac{\frac{\alpha R^0}{n}}{R^0}\right] = \frac{\alpha n_0}{n}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Conclusion: Exact result under BI.

Introduction: Class-room notes

Dependent Normal Distributions

Example 1. BH procedure and positive (negative) normally distributed test statistics

Let X_1 and Y be i.i.d. standard normal random variables. Consider bivariate normals:

$$(X_1, X_2) = (X_1, \frac{1}{\sqrt{2}}X_1 + \frac{1}{\sqrt{2}}Y)$$
 positive dependence (1)
 $(X_1, X_2) = (X_1, \frac{1}{\sqrt{2}}X_1 - \frac{1}{\sqrt{2}}Y)$ negative dependence (2)

with related p-values $(p_1, p_2) = (\Phi(X_1), \Phi(X_2))$. Then for the FDR of the BH procedure at level $\alpha = 0.5$ and $n_0 = n = 2$ we get

$$FDR = \frac{7}{16} < \alpha$$
 under model (1) and
 $FDR = \frac{9}{16} > \alpha$ under model (2).

Introduction: Class-room notes

Bonferroni adjustment under dependency

Example 2

Bonferroni: reject H_i if $p_i \leq \frac{\alpha}{n}$.

$$\mathsf{FWER} = P(V > 0) \leqslant \alpha.$$

Example

Bonferroni can not be improved under arbitrary dependency because FWER = α may occur. Reason: $P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i)$ with ' =' if all A_i 's are disjoint.

Introduction: Class-room notes

Bonferroni adjustment under dependency

Example 2. Graphical representation.

Divide the [0,1]-Interval into *n* parts.

・ロト・西ト・西ト・日下・ 日下

Introduction: Class-room notes

Bonferroni adjustment under dependency

Example 2. Graphical representation.

Throw the point U in the interval and choose a subinterval

Introduction: Class-room notes

Bonferroni adjustment under dependency

Example 2. Graphical representation.

Duplicate the subinterval with the point U n times and get uniformly distributed $p_1, ..., p_6$.

Introduction: Class-room notes

Bonferroni adjustment under dependency

Formally: We consider for i = 1, ..., n and $U \sim U(0, 1)$ the following random variables

$$p_i = \left(U + \frac{i-1}{n}\right) \mod 1 \tag{3}$$

For such random variables we get

$$P(p_{1:n} \leq \frac{\alpha}{n}) = P(\bigcup_{i=1}^{n} \{p_i \leq \frac{\alpha}{n}\}) = \sum_{i=1}^{n} P(p_i \leq \frac{\alpha}{n}) = \alpha,$$

because all the sets $\{p_i \leq \frac{\alpha}{n}\}$ are disjoint.

We get FWER =
$$\alpha$$
.

Conclusion: Specified dependence structure is needed for FDR and FWER control.

Martingale Dependence

Outline

Introduction: Class-room notes

- Benjamini and Hochberg Theorem
- Dependent Normal Distributions
- Bonferroni adjustment under dependency

2 Martingale Dependence

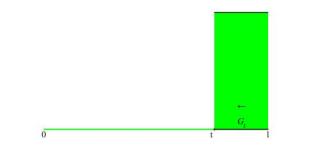
- Examples of Martingale Dependence
- Inequalities for the FDR
- Sharp Results under Martingale Dependence

Martingale Dependence

Martingale Dependence

Related to random variables $p_1, ..., p_n$ let us define the reverse filtrations

$$\mathcal{G}_t = \sigma(\mathbf{1}_{(s,1]}(p_i), 0 < t \leq s, i \in \{1, ..., n\}), \ 0 < t \leq 1.$$



▶ ▲ 臣 ▶ ▲ 臣 ▶ 臣 ● の Q @

Martingale Dependence

Martingale Dependence

$$(M_t)_{t \in (0,1]}$$
 is a \mathcal{G}_t – reverse martingale $E[M_t|\mathcal{G}_s] = M_s$, for all $1 \ge s \ge t > 1$.

Definition (Reverse Martingale (RM))

We say that p-values $p_1, ..., p_n$ fulfill the Martingale Dependence Assumption RM if the process $\left(\frac{\mathbf{1}_{(p_i \leq t)}}{t}\right)_{t \in (0,1]}$ is a \mathcal{G}_t -reverse martingale for all $i \in I_0$ ('true' p-values).

Martingale Dependence

Examples of Martingale Dependence

Examples of RM

Example

- Basic Independence Model fulfills RM.
- Let X₀, X₁, ..., X_n be continuous, independent, real random variables, where X₁, ..., X_n are i.i.d.. Consider Z_i = max(X₀, X_i), i = 1, ..., n. Then the transformed true p-values of the form

$$p_i = H(Z_i)$$
, where $H(t) = P(Z_1 \leq t)$, $i = 1, ..., n$, (4)

fulfill RM.

Interpretation: X_i is only observable over a random background level X_0 .

Martingale Dependence

Inequalities for the FDR

Inequalities for the FDR under RM.

Theorem (Heesen and J. (2015))

Assume the reverse martingale model RM and consider the SU test with arbitrary deterministic critical values $0 < a_1 \leq ... \leq a_n < 1$. Then we have

$$\frac{n_0}{n}\left(\min_{i\leqslant n}\frac{na_i}{i}\right)\leqslant FDR\leqslant \frac{n_0}{n}\left(\max_{i\leqslant n}\frac{na_i}{i}\right).$$
(5)

Conclusion: BH :
$$a_i = \frac{\alpha i}{n} \Rightarrow \text{FDR} = \frac{n_0 \alpha}{n}$$
.

Remark

Note that the lower bound from (5) is not valid for positive dependent true p-values (PRDS)(normal distribution).

Martingale Dependence

Sharp Results under Martingale Dependence

Adaptive SU Tests with data dependent critical values

Fix $0 < \lambda < 1$.

$$a_i = \min(rac{ilpha}{\hat{n}_0}, \lambda), \ 1 \leqslant i \leqslant n,$$

where $\frac{\hat{n}_0}{n}$ is an estimator of $\frac{n_0}{n}$.

Example (Storey's Estimator, cf. Storey (2002))

$$\hat{\pi}_{0}^{\text{Storey}} = \frac{\hat{n}_{0}}{n} = \frac{1 - \hat{F}_{n}(\lambda) + \frac{1}{n}}{(1 - \lambda)},$$

FDR $\leq \alpha$ under BI.

thereby \hat{F}_n is edf of the p_i 's.

Martingale Dependence

Sharp Results under Martingale Dependence

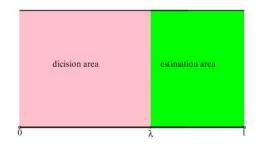
General concept.

$$a_i = g_i((\hat{F}_n(t))_{t \ge \lambda}), \ i = 1, ..., n,$$

(6)

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● の Q @

given by measurable functions g_i .



Martingale Dependence

Sharp Results under Martingale Dependence

Result under RM

Theorem (Heesen and J. (2015), El. J. Stat.)

Let $0 < a_1 \leq a_2 \leq ... \leq a_n \leq \lambda < 1$ be data dependent critical values (6) and introduce $a_0 = a_1$. Then

$$E\left[\frac{V}{na_R}\right] = \frac{n_0}{n}$$

(日) (日) (日) (日) (日) (日) (日)

holds for the corresponding SU tests under RM.

Key result for FDR control of adaptive SU tests under RM. Example: Storey Type multiple tests

Martingale Dependence

Sharp Results under Martingale Dependence

Result under RM

Theorem (Heesen and J. (2015), El. J. Stat.)

Let $0 < a_1 \leq a_2 \leq ... \leq a_n \leq \lambda < 1$ be data dependent critical values (6) and introduce $a_0 = a_1$. Then

$$E\left[\frac{V}{na_R}\right] = \frac{n_0}{n}$$

(日) (日) (日) (日) (日) (日) (日)

holds for the corresponding SU tests under RM.

Key result for FDR control of adaptive SU tests under RM. Example: Storey Type multiple tests.

Martingale Dependence

Sharp Results under Martingale Dependence

Lemma (Heesen, J.(2015), El. J. Stat.)

Let $V(\lambda) := \#\{p_i : p_i \leq \lambda, i \in I_0\}$. Under RM, the adaptive SU test with critical values (6) and a.s. positive estimator $\hat{n}_0 = g((\hat{F}_n(t))_{\lambda \leq t \leq 1})$ fulfills

$$E\left[\frac{V}{R}\right] = \frac{\alpha}{\lambda} E\left[V(\lambda) \min\left(\frac{1}{\hat{n}_0}, \frac{1}{n\hat{F}_n(\lambda)\alpha}\right)\right] \leq \frac{\alpha}{\lambda} E\left[\frac{V(\lambda)}{\hat{n}_0}\right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Conclusion: BH Procedure is relative robust under dependence,

whereas Storey's Type procedures can be very liberal under dependence (also under RM)

block-wise dependence (*k* chromosomes) (see Heesen and J.,(2015) Dynamic adaptive multiple tests with finite sample FDR control, arxiv: 1410.6296)

$$rac{\hat{n}_0}{n} = rac{1-\hat{F}_n(\lambda)+rac{\kappa}{n}}{1-\lambda}, \ \kappa>1$$
 needed.

 Heesen, P. and Janssen, A. (2015) Inequalities for the false discovery rate (FDR) under dependence. El. J. Stat. 9, 679-716.
 Heesen, P. and Janssen, A. (2015) Dynamic adaptive multiple tests with finite sample FDR control. Preprint ,arxiv: 1410.6296.
 Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. B 57, 289-300.

4 Finner, H., Dickhaus, T. and Roters, M. (2009) *On the false discovery rate and an asymptotically optimal rejection curve.* Ann. Statist. **37**, 596-618.

5 Finner, H. and Roters, M. (2002) *On the false discovery rate and expected type I errors.* Biometrical Journal **43**, 985-1005.

Thank you for your attention!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @