Union-Intersection Based Goodness-of-Fit Tests in Terms of Local Levels

V. Gontscharuk and H. Finner

Institute for Biometrics and Epidemiology, German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research

> Multiple Tests and Confidence Intervals Cologne, 24. June 2015

Goodness-of-Fit Tests

 $X_1, \ldots, X_n \stackrel{iid}{\sim} F$ continuous, $X_{1:n}, \ldots, X_{n:n}$ related order statistics $H_0^+: F(x) \le F_0(x)$ or $H_0: F(x) = F_0(x)$

 φ^+ rejects H_0^+ (i.e., $\varphi^+ = 1$) iff $X_{i:n} \le c_{i,n}$ for some *i*. φ rejects H_0 (i.e., $\varphi = 1$) iff $X_{i:n} \le c_{i,n}$ or $X_{i:n} \ge \tilde{c}_{i,n}$ for some *i*.

Assumption: $0 \le c_{1,n} < \ldots < c_{n,n} < 1, 0 < \tilde{c}_{1,n} < \ldots < \tilde{c}_{n,n} \le 1$ and $c_{i,n} < \tilde{c}_{i,n}, i = 1, \ldots, n$.

Examples: Kolmogorov-Smirnov, Anderson-Darling, Berk-Jones tests and other tests based on φ -divergences

Goodness-of-Fit Tests

 $X_1, \ldots, X_n \stackrel{iid}{\sim} F$ continuous, $X_{1:n}, \ldots, X_{n:n}$ related order statistics $H_0^+: F(x) \le x$ or $H_0: F(x) = x$

 φ^+ rejects H_0^+ (i.e., $\varphi^+ = 1$) iff $X_{i:n} \le c_{i,n}$ for some *i*. φ rejects H_0 (i.e., $\varphi = 1$) iff $X_{i:n} \le c_{i,n}$ or $X_{i:n} \ge \tilde{c}_{i,n}$ for some *i*.

Assumption: $0 \le c_{1,n} < \ldots < c_{n,n} < 1, 0 < \tilde{c}_{1,n} < \ldots < \tilde{c}_{n,n} \le 1$ and $c_{i,n} < \tilde{c}_{i,n}, i = 1, \ldots, n$.

Examples: Kolmogorov-Smirnov, Anderson-Darling, Berk-Jones tests and other tests based on φ -divergences

The Union-Intersection Principle and Local Levels

 $U_1, \ldots, U_n \stackrel{iid}{\sim} U(0, 1), U_{1:n}, \ldots, U_{n:n}$ related order statistics H_i^+ (or H_i) is true if $X_{i:n} \stackrel{st.}{\geq} U_{i:n}$ (or $X_{i:n} \stackrel{\mathcal{D}}{=} U_{i:n}$)

$$\Rightarrow H_0^+ \subseteq \cap_{i=1}^n H_i^+ \text{ and } H_0 \subseteq \cap_{i=1}^n H_i$$

$$\varphi_i^+$$
 rejects H_i^+ (i.e., $\varphi_i^+ = 1$) iff $X_{i:n} \le c_{i,n}$.
 φ_i rejects H_i (i.e., $\varphi_i = 1$) iff $X_{i:n} \le c_{i,n}$ or $X_{i:n} \ge \tilde{c}_{i,n}$.

 $\Rightarrow \varphi^+ = \max_i \varphi_i^+$ and $\varphi = \max_i \varphi_i$ are union-intersection tests.

Local levels:

$$\alpha_{i,n}^+ = \mathbb{P}(\varphi_i^+ = 1 | H_0) = \mathbb{P}(U_{i:n} \le c_{i,n})$$

 $\alpha_{i,n} = \mathbb{P}(\varphi_i = 1 | H_0) = \mathbb{P}(U_{i:n} \le c_{i,n}) + \mathbb{P}(U_{i:n} \ge \tilde{c}_{i,n})$

Local Levels of Kolmogorov-Smirnov Tests

 $\alpha_{i,n}^+$ for $\alpha = 0.05$ and n = 100, 500, 1000 and the corresponding asymptotic local levels (black curve)

Local Levels of Tests Based on φ -Divergences

 $\alpha_{i,n} \equiv \alpha_{i,n}(s)$ with $\alpha = 0.05$ and n = 1000 s = 2: Higher Criticism (HC), s = 1: Berk-Jones (BJ), s = 0: reversed BJ, s = -1: studentized HC

GOF Tests in Terms of Local Levels

For given critical values $c_{i,n}$, $\tilde{c}_{i,n}$, i = 1, ..., n, we get $\alpha_{i,n}^+ = \mathbb{P}(U_{i:n} \leq c_{i,n})$ and $\alpha_{i,n} = \mathbb{P}(U_{i:n} \leq c_{i,n}) + \mathbb{P}(U_{i:n} \geq \tilde{c}_{i,n})$.

 $U_{i:n} \sim Beta(i, n - i + 1)$ with cdf $F_{i,n-i+1}$

One-sided test: $c_{i,n} = F_{i,n-i+1}^{-1}(\alpha_{i,n}^+), i = 1, ..., n$

Two-sided test: Split $\alpha_{i,n}$ in $\alpha_{i,n}^{(1)}$ and $\alpha_{i,n}^{(2)}$ such that $\alpha_{i,n} = \alpha_{i,n}^{(1)} + \alpha_{i,n}^{(2)}$ (e.g., $\alpha_{i,n}^{(1)} = \alpha_{i,n}^{(2)} = \alpha_{i,n}/2$) $\Rightarrow c_{i,n} = F_{i,n-i+1}^{-1}(\alpha_{i,n}^{(1)})$ and $\tilde{c}_{i,n} = F_{i,n-i+1}^{-1}(1 - \alpha_{i,n}^{(2)}), i = 1, ..., n$

GOF Test With Equal Local Levels

$$\alpha^+_{1,n} = \ldots = \alpha^+_{n,n} = \alpha^{loc}_n$$
 or $\alpha_{1,n} = \ldots = \alpha_{n,n} = \alpha^{loc}_n$

$$\varphi^+(\alpha_n^{loc})$$
: $c_{i,n} = F_{i,n-i+1}^{-1}(\alpha_n^{loc})$
 $\varphi(\alpha_n^{loc})$: $c_{i,n} = F_{i,n-i+1}^{-1}(\alpha_n^{loc}/2)$ and $\tilde{c}_{i,n} = 1 - F_{i,n-i+1}^{-1}(\alpha_n^{loc}/2)$

$$p_{i,n} = F_{i,n-i+1}(X_{i:n}), i = 1, \ldots, n$$
, one-sided *p*-values

$$M_n^+ = \min_{i=1,\dots,n} p_{i,n}$$
 and $M_n = 2 \min_{i=1,\dots,n} \{p_{i,n}, 1 - p_{i,n}\}$

 $\varphi^+(\alpha_n^{loc}) = 1 \text{ iff } M_n^+ \leq \alpha_n^{loc} \text{ and } \varphi(\alpha_n^{loc}) = 1 \text{ iff } M_n \leq \alpha_n^{loc}$

 $\Rightarrow \varphi^+(\alpha_n^{loc}) \text{ and } \varphi(\alpha_n^{loc}) \text{ are minimum } p\text{-value (minP) GOF tests.}$

minP Tests: Different Names and Representations

- Berk & Jones [1978,1979] introduced M_n^+ and M_n as minimum level attained statistics: optimality and Bahadur efficiency;
- Buja & Rolke [2006] (unpublished): minP tests in terms of bounding functions;
- Gontscharuk, Landwehr & Finner (talks at MCP 2011 and MCP 2013): GOF tests with equal local levels, HC tests;
- Aldor et al. [2013]: tests based on the new tail-sensitive simultaneous confidence bands;
- Mary & Ferrari [2014]: non-asymptotic standardization of binomial counts, HC framework;
- Preprints: calibrated KS tests in Moskovich et al., Dirichlet-based tests in Kaplan & Goldman.

Level α minP GOF Tests

Find α_n^{loc} so that $\mathbb{P}(M_n^+ \leq \alpha_n^{loc}|H_0) = \alpha$ or $\mathbb{P}(M_n \leq \alpha_n^{loc}|H_0) = \alpha$.

Let φ be an exact level α test with local levels $\alpha_{i,n}$. Then $\min_{i=1,\dots,n} \alpha_{i,n} \leq \alpha_n^{loc} \leq \max_{i=1,\dots,n} \alpha_{i,n}.$

Example: $i \equiv i_n$ such that $i/n \to \zeta \in (0, 1)$ leads to the asymptotic KS local level $\alpha_{\zeta}^{KS} = 1 - \Phi(-\log(\alpha)/(2\zeta(1-\zeta)))$. Hence,

$$\alpha_n^{loc} \leq 1 - \Phi(\sqrt{-2\log(\alpha)}) + o(1), \ n \in \mathbb{N}.$$

GOF Tests Based on φ -Divergences

 $\alpha_{i,n} \equiv \alpha_{i,n}(s)$ with $\alpha = 0.05$ and n = 1000, s = 2: Higher Criticism, s = 1: Berk-Jones

Higher Criticism (HC) Statistics

HC statistics are normalized KS statistics:

$$HC_{n}^{+} = \max_{i=1,...,n} \sqrt{n} \frac{i/n - X_{i:n}}{\sqrt{X_{i:n}(1 - X_{i:n})}},$$

$$HC_{n} = \max_{i=1,...,n} \left\{ \sqrt{n} \frac{i/n - X_{i:n}}{\sqrt{X_{i:n}(1 - X_{i:n})}}, \sqrt{n} \frac{X_{i:n} - (i-1)/n}{\sqrt{X_{i:n}(1 - X_{i:n})}} \right\}$$

- Eicker [1979] and Jaeschke [1979] provided a lot of asymptotic results.
- Local levels of one-sided HC asymptotic level α tests

$$\alpha_{i,n}^{HC}(\alpha) \approx \frac{-\log(1-\alpha)}{2\log_2(n)\log(n)}$$

for the most $i \in \{1, ..., n\}$, cf. Gontscharuk et al.[2015]

HC local levels are asymptotically equal in the sensitivity range.

Asymptotics of minP GOF Tests

Theorem 1: (Gontscharuk & Finner [2015]) The minP test with critical value d_n is an asymptotic level α test iff

$$\lim_{n \to \infty} d_n / \alpha_n^* = 1 \text{ with } \alpha_n^* \equiv \alpha_n^*(\alpha) = -\frac{\log(1-\alpha)}{2\log_2(n)\log(n)}$$

Remark:

- Critical values *d_n* related to asymptotic level *α* minP tests converge to 0 for *n* → ∞.
- The asymptotic critical value is the same for one- and two-sided minP tests.

z-Transformed minP Statistics

Theorem 2: (Gontscharuk & Finner [2015]) The *z*-transformed minP statistics $\Phi^{-1}(1 - M_n^+)$ and $\Phi^{-1}(1 - M_n/2)$ have the same asymptotic distribution as HC_n^+ and HC_n , resp.

Remark: Theorem 2 implies that the minP critical values

 $\alpha'_n = 1 - \Phi(b_n(t^+_{\alpha}))$ and $\alpha''_n = 2(1 - \Phi(b_n(t_{\alpha}))),$

where $b_n(t) = \sqrt{2\log_2(n)} + (\log_3(n) - \log(\pi) + 2t)/(2\sqrt{2\log_2(n)})$, $t_{\alpha}^+ = -\log(-\log(1-\alpha))$ and $t_{\alpha} = -\log(-\log(1-\alpha)/2)$, lead to asymptotic level α minP tests.

Applicability of Asymptotic Results

Left graph: α_n^* , α_n' , α_n'' , α_n'' related to level α one-sided (upper curves) and two-sided (lower curves) minP tests.

Right graph: $\mathbb{P}(M_n^+ \leq d_n | H_0)$ (lower curves) and $\mathbb{P}(M_n \leq d_n | H_0)$ (upper curves) for $d_n = \alpha_n^*, \alpha'_n, \alpha''_n$

Finite Approximation for α_n^{loc}

The asymptotic HC local levels are given by

$$\alpha_{i,n}^{HC}(\alpha) = \frac{-\log(1-\alpha)}{2\log_2(n)\log(n)} \left[1 + O\left(\frac{\log_3(n)}{\log_2(n)}\right)\right]$$

for $\log(n) \le i \le n - \log(n)$, cf. Gontscharuk et al. [2015].

Define

$$d_n(\alpha) = \frac{-\log(1-\alpha)}{2\log_2(n)\log(n)} \left[1 - \boldsymbol{c_\alpha} \frac{\log_3(n)}{\log_2(n)}\right],$$

where $c_{\alpha} \in \mathbb{R}$ is a suitable constant.

Since $d_n(\alpha)/\alpha_n^* \to 1$ as $n \to \infty$, Theorem 1 implies that $d_n(\alpha)$ leads to asymptotic level α minP tests.

Approximated And Exact Critical Values

Critical values related to two-sided level α minP GOF tests

 $d_n(\alpha)$ with $c_{\alpha} = 1.6, 1.3, 1.1$ (diamonds from bottom to top) and α_n^{loc} for $\alpha = 0.01, 0.05, 0.1$ (solid curves from bottom to top)

Simulated Global Levels Related to $d_n(\alpha)$

n	$\alpha = 0.01$	$\alpha = 0.05$	$\alpha = 0.1$
$n = 10^4$	0.00966 (0.00972)	0.04874 (0.04905)	0.09969 (0.09937)
$n = 5 \times 10^4$	0.00961	0.04971	0.10016
$n = 10^5$	0.01018	0.05019	0.10188
$n = 5 \times 10^{5}$	0.01001	0.05018	0.10115
$n = 10^{6}$	0.00973	0.04942	0.10135

 $\mathbb{P}(M_n \leq d_n(\alpha)|H_0)$ (and $\mathbb{P}(M_n \leq \alpha_n^{loc}|H_0)$ for $n = 10^4$ only) simulated by 10^5 repetitions, where $d_n(\alpha)$ is based on $c_{\alpha} = 1.6, 1.3, 1.1$ for $\alpha = 0.01, 0.05, 0.1$, resp.

The minP GOF test works very well at least for considered α - and *n*-values.

Take Home Message

- Local levels can be seen as a measure of local sensitivity.
- One may construct a tailored GOF test by means of local levels.
- The minP test is a test with equal local levels.
- HC asymptotics is the key to the minP asymptotics.
- We provide three competing critical values leading to the asymptotic level α minP tests.
- The minP (as well as HC) asymptotics is very slow.
- New approximation for the minP critical value that works well for finite samples and leads to asymptotic level α tests.

References

- Berk, R. and Jones, D. (1978). Relatively optimal combinations of test statistics. *Scand. J. Stat.*, **5**, 158–162.
- Berk, R. and Jones, D. (1979). Goodness-of-fit test statistics that dominate the Kolmogorov Statistics. Z. Wahrscheinlichkeit., 47, 47–59.
- Gontscharuk, V., Landwehr, S. and Finner, H. (2015). Goodness of fit tests in terms of local levels with special emphasis on higher criticism tests. *Bernoulli*, accepted for publication.
- Gontscharuk, V., Landwehr, S. and Finner, H. (2015). The intermediates take it all: asymptotics of higher criticism statistics and a powerful alternative based on equal local levels. *Biometrical J.*, 57, 159–180.
- Gontscharuk, V. and Finner, H. (2015). Asymptotics of goodness-of-fit tests based on minimum *p*-value statistics. *Commun. Stat. A-Theor.*, accepted for publication.
- Jager, L. and Wellner, J. (2007). Goodness-of-fit tests via phi-divergences. *Ann. Stat.*, **35**, 2018–2053.

