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Goodness-of-Fit Tests

Xi,.... X, i g continuous, Xj..,...,X,., related order statistics

Har : F()C) < F()()C) or Hy: F()C) = F()()C)

©* rejects Hy (i.e., ¢ = 1) iff Xi., < ¢;, for some i.

p rejects Hy (i.e., ¢ = 1) iff X;., < ¢;, or Xi., > ¢, fOr some .

Assumption: 0<c|, < ... < <1,0<¢1, <...<¢pn <1
andci, <Cini=1,...,n.

Examples: Kolmogorov-Smirnov, Anderson-Darling,
Berk-Jones tests and other tests based on o-divergences
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The Union-Intersection Principle and Local Levels

Uy,...,U, iid U0,1), Uy, ..., Uy, related order statistics

. . St D
H (or H;) istrue if Xi, > U, (OF Xiyy = Usy)

= Hf C N ,H} and Hy C N, H;

o) rejects H' (i.e., ¢ = 1) iff Xi < cin.

p; rejects H; (i.e., o; = 1) iff Xiy < cip OF Xy > Cip.

= ¢ =max; p; and p = max; ¢; are union-intersection tests.

Local levels:
Oézti_n = P(@j_ = 1’I{O) = ]P)(Ui:n < Ci,n)

Qipn = P(Sot = I‘HO) = ]P(Ui:n < Ci,n) + IEI>(Ui:n > ELII)
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Local Levels of Kolmogorov-Smirnov Tests
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Local Levels of Tests Based on ¢-Divergences
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Qi = ain(s) with a = 0.05 and n = 1000

s = 2: Higher Criticism (HC), s = 1: Berk-Jones (BJ),

s = 0: reversed BJ, s = —1: studentized HC —
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GOF Tests in Terms of Local Levels

For given critical values c; ,,,¢;, i = 1,...,n, we get

— 5 5 n = 3 n —

a:rn = IP(Ui:n < Cin) and o;, = IPJ(Uln < Cin) + IP)<Utn > E'i,n)-

Ui ~ Beta(i,n — i+ 1) with cdf F; ,_;

One-sided test: ¢;, = F..'  (a)),i=1,...,n

i,n—i+1 i,n

Two-sided test: Split «; , in a and a ) such that
Qip = (1) 4 O4(2) (e.g., a(l) a(2) _ Oéi,n/z

(“)andcn Fl

1
:>Ci>’7 =F;, in—i+1

in—i+1

nLn

(1-a?y),i=1,...
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GOF Test With Equal Local Levels

+ _ _ _ _ _ _
af,=...= a;fn = Of a1y =...=Quy ="
+(aloc)- Ci = Ffl (aloc)
Yoy ) Cin =1L i1y

() ¢y = F!

" l7n—i+1(afloc/2) and ¢, =1— F,-j,,l_,-+1(af,00/z)

Pin = Fin—iv1(Xin), i = 1,...,n, one-sided p-values

n

M = min p;, and M, =2 min {pin, 1 — pin}
i=1,...n i=1,...,n
n

pH(al) =1 iff M <ol and () =1 iff M, <l

= o1 (a/¢) and (k) are minimum p-value (minP) GOF tests.
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minP Tests: Different Names and Representations

e Berk & Jones [1978,1979] introduced M," and M, as
minimum level attained statistics: optimality and Bahadur
efficiency;

e Buja & Rolke [2006] (unpublished): minP tests in terms of
bounding functions;

e Gontscharuk, Landwehr & Finner (talks at MCP 2011 and
MCP 2013): GOF tests with equal local levels, HC tests;

e Aldor et al. [2013]: tests based on the new tail-sensitive
simultaneous confidence bands;

e Mary & Ferrari [2014]: non-asymptotic standardization of
binomial counts, HC framework;

e Preprints: calibrated KS tests in Moskovich et al.,
Dirichlet-based tests in Kaplan & Goldman.
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Level @ minP GOF Tests
Find o/¢ so that P(M,} < o/°|Hy) = a or P(M,, < al°°|Hp) = a.

Let ¢ be an exact level « test with local levels «;,. Then
= in Qi p < 065700 < -I?ax Qi p-

Example: i = i, such thati/n — ¢ € (0,1) leads to the

asymptotic KS local level of® = 1 — ®(—log()/(2¢(1 —()))-

Hence,

al%¢ <1 — ®(y/—2log(a)) + o(1), neN.

n
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GOF Tests Based on ¢-Divergences

0.020

0.015

0.010

0.005

0.020

0.015

0.010

0.005

0.020

0.015

0.010

0.005

0.020

0015

0010

0.005

0.020

0.015

0.010

0.005

Qi = ain(s) with a = 0.05 and n = 1000,
s = 2: Higher Criticism, s = 1: Berk-Jones

0.020

0.015

0.010

0.005

0.020

0.005

0
0051

s=1

VUL



Higher Criticism (HC) Statistics

e HC statistics are normalized KS statistics:

n— X
HCI = max nl/n—"",
77777 n X,n(l —X,'.n)

HC, = max {V wﬁf’: e B an( )/}

e Eicker [1979] and Jaeschke [1979] prowded a lot of
asymptotic results.

e Local levels of one-sided HC asymptotic level « tests
—log(l — «)

2log,(n) log(n)

for the mosti € {1,...,n}, cf. Gontscharuk et al.[2015]

afy (o) =

HC local levels are asymptotically equal in the sensitivity range.
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Asymptotics of minP GOF Tests

Theorem 1: (Gontscharuk & Finner [2015]) The minP test with
critical value d,, is an asymptotic level « test iff
log(1 — )

lim d,/a; =1 with o), = o) () = ———"F———.
Jim. W/, with o), = o, (a) STog, () Tog(1)

Remark:
e Critical values d, related to asymptotic level « minP tests
converge to 0 for n — oo.
e The asymptotic critical value is the same for one- and
two-sided minP tests.
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z-Transformed minP Statistics

Theorem 2: (Gontscharuk & Finner [2015]) The z-transformed
minP statistics ®~'(1 — M;") and ®~!(1 — M, /2) have the same
asymptotic distribution as HC;" and HC,,, resp.

Remark: Theorem 2 implies that the minP critical values

(Y:z =1- (I)(bn(tg)) and ”:1/ =2(1 = ®(bu(ta))),
where b, (1) = \/21og,(n) + (logs(n) — log(7) + 21)/(2+/2log,(n)),
rt = —log(—log(1 — ) and ¢, = —log(—log(1 — ) /2), lead to
asymptotic level a minP tests.
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Applicability of Asymptotic Resulis
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Left graph: o}, o/, o/, o/ related to level « one-sided (upper
curves) and two-sided (lower curves) minP tests.
Right graph: P(M,” < d,|H) (lower curves) and P(M,, < d,|H,)
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Finite Approximation for !¢

n

The asymptotic HC local levels are given by
—log(1 — a) [ log;(n)
HC() = 8% 114 o (28
# () = Fiog, (n) Tog(n) log,(n)
for log(n) <i < n —log(n), cf. Gontscharuk et al. [2015].

Q

Define

—log(1 — «) log;(n)
d =———— |l —cp— )
) = Sgetogtr ||~ o
where ¢, € R is a suitable constant.

Since d,(a)/a} — 1 as n — oo, Theorem 1 implies that d,(«)
leads to asymptotic level & minP tests.
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Approximated And Exact Critical Values

Critical values related to two-sided level « minP GOF tests
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d,(a) with ¢, = 1.6,1.3, 1.1 (diamonds from bottom to top) and
aloc for a = 0.01,0.05, 0.1 (solid curves from bottom to top) DD-
Fies)



Simulated Global Levels Related to d,(«)

n a=0.01 a=0.05 a=0.1
n=10* 0.00966 (0.00972)  0.04874 (0.04905)  0.09969 (0.09937)
n=75x10* 0.00961 0.04971 0.10016
n=10 0.01018 0.05019 0.10188
n=35x10" 0.01001 0.05018 0.10115
n=10° 0.00973 0.04942 0.10135

P(M, < d,(a)|Hy) (and P(M,, < alo¢|Hy) for n = 10* only)
simulated by 103 repetitions, where d,(«) is based on

co = 1.6,1.3,1.1 for & = 0.01,0.05, 0.1, resp.

The minP GOF test works very well at least for considered

«- and n-values.
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Take Home Message

Local levels can be seen as a measure of local sensitivity.

One may construct a tailored GOF test by means of local
levels.

The minP test is a test with equal local levels.
HC asymptotics is the key to the minP asymptotics.

We provide three competing critical values leading to the
asymptotic level o minP tests.

The minP (as well as HC) asymptotics is very slow.

New approximation for the minP critical value that works
well for finite samples and leads to asymptotic level « tests.
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