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Notational setup

Given: Statistical model (Ω,F , (Pϑ)ϑ∈Θ)

Hm = (Hi)i=1,...,m Family of null hypotheses with ∅ 6= Hi ⊂ Θ
and alternatives Ki = Θ \ Hi

(Ω,F , (Pϑ)ϑ∈Θ,Hm) multiple test problem
ϕ = (ϕi : i = 1, . . . ,m) multiple test for Hm

Test decision
Hypotheses 0 1

true Um Vm m0
false Tm Sm m1

Wm Rm m
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Local significance level
(Strong) control of the Family-Wise Error Rate (FWER):

∀ϑ ∈ Θ : FWERϑ(ϕ) = Pϑ(Vm > 0)
!
≤ α

Bonferroni correction:
Carry out each individual test ϕi at local level αloc. := α/m.
Let I0(ϑ) denote the index set of true hypotheses in Hm under ϑ.

FWERϑ(ϕ) = Pϑ

 ⋃
i∈I0(ϑ)

{ϕi = 1}


≤

∑
i∈I0(ϑ)

Pϑ({ϕi = 1})

≤ m0αloc. ≤ mαloc. = α.
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Simultaneous test procedures
K. R. Gabriel (1969), Hothorn et al. (2008)

Definition:
Define the (global) intersection hypothesis by H0 =

⋂m
i=1 Hi.

Consider the extended problem (Ω,F , (Pϑ)ϑ∈Θ,Hm+1) with
Hm+1 = {Hi, i ∈ I∗ := {0, 1, . . . ,m}}.

Assume real-valued test statistics Ti, i ∈ I∗, which tend to larger
values under alternatives. Then we call

(a) (Hm+1, T ) with T = {Ti, i ∈ I∗} a testing family.

(b) ϕ = (ϕi, i ∈ I∗) a simultaneous test procedure (STP), if

∀0 ≤ i ≤ m : ϕi =

{
1, if Ti > cα,
0, if Ti ≤ cα,

such that

∀ϑ ∈ H0 : Pϑ ({ϕ0 = 1}) = Pϑ ({T0 > cα}) ≤ α.
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FWER control with STPs
Assumptions (for the moment):

1. There exists a ϑ∗ ∈ H0 which is a least favorable parameter
configuration (LFC) for the FWER of the STP ϕ
based on T1, . . . ,Tm.

2. ∀1 ≤ i ≤ m : Hi : {θi(ϑ) = θ∗i }, where θ : Θ→ Θ′

3. L(Ti) is continuous under Hi with known cdf. Fi.

Exemplary model classes:
• ANOVA1: all pairs comparisons (Tukey contrasts), multiple

comparisons with a control group (Dunnett contrasts)
Assumptions 1. - 3. are fulfilled (θ: difference operator)

• Multiple association tests in contingency tables,
genetic association studies
Assumptions 1. - 3. are fulfilled, at least asymptotically
(for large sample sizes)
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Copulae

Theorem: (Sklar (1959, 1996))
Let X = (X1, . . . ,Xm)> a random vector with values in Rm and
with joint cdf FX and marginal cdfs FX1 , . . . ,FXm .
Then there exists a function C : [0, 1]m → [0, 1] such that

∀x = (x1, . . . , xm)> ∈ R̄m : FX(x) = C(FX1(x1), . . . ,FXm(xm)).

If all m marginal cdfs are continuous, the copula C is unique.

Obviously, it holds:

If all Xi, 1 ≤ i ≤ m, are marginally distributed as UNI[0, 1],
then FX = C !
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p-values, distributional transforms

Under our general assumptions 1. - 3., appropriate p-values
corresponding to the Ti are given by

∀1 ≤ i ≤ m : pi = 1− Fi(Ti).

Properties of pi under assumptions 1. - 3.:

• Ti > cα ⇐⇒ pi < 1− Fi(cα), if Fi is strictly isotone.
We may think of α(i)

loc. := 1− Fi(cα) as a multiplicity-adjusted
local significance level.

• 1− pi is equal to Rüschendorf’s distributional transform.
• Under Hi, we have pi ∼ UNI[0, 1] and 1− pi ∼ UNI[0, 1].
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A simple calculation

Let us construct an STP ϕ in terms of p-values.

Due to the above, we only have to consider multiple tests
of the form ϕ = (ϕi : 1 ≤ i ≤ m) with ϕi = 1

[0,α(i)
loc.)

(pi).

For arbitrary ϑ ∈ Θ and ϑ∗ ∈ H0, we get:

FWERϑ(ϕ) = Pϑ

 ⋃
i∈I0(ϑ)

{pi < α
(i)
loc.}

 ≤ Pϑ∗
(

m⋃
i=1

{pi < α
(i)
loc.}

)

= 1− Pϑ∗
(

m⋂
i=1

{1− pi ≤ 1− α(i)
loc.}

)
= 1− Cϑ∗(1− α(1)

loc. , . . . , 1− α
(m)
loc. ),

with Cϑ∗ denoting the copula of (1− pi : 1 ≤ i ≤ m) under ϑ∗.
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Projection method, Hothorn et al. (2008)

Assume that an (asymptotically) jointly normal vector of test
statistics T = (T1, . . . ,Tm)> is at hand.

For control of the FWER by an STP based on T, determine the
equicoordinate (two-sided) (1− α)-quantile of the joint normal
distribution of T and project onto the axes.

R: vcov() + mvtnorm
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FWER control at level α = 0.3
via contour lines of the copula Cϑ∗

We obtain αloc. ≈ 0.2.

Cross-check: Φ−1(1− αloc./2) is equal to the
tabulated normal quantile for the chosen parameters.

The structural information provided by Cϑ∗ increases power!

If one hypothesis is more important than the other,
just change the slope of the blue straight line.
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Unknown copula Cϑ∗

In the case that we are willing to assume 1. - 3., but
do not know the copula Cϑ∗ , we propose:

• Parametric copula estimation
(e. g., via Spearman’s ρ and/or Kendall’s τ
and/or Hoeffding’s lemma)

• Nonparametric copula estimation
(e. g., with Bernstein copulae)

• Modeling with structured (hierarchical) copulae
(e. g., for block dependencies)

• Approximating contour lines by resampling or
statistical learning techniques

These are research topics within our Research Unit FOR 1735
”Structural Inference in Statistics: Adaptation and Efficiency”.
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Extended model setup with copula parameter

Extended model for the family of probability measures:

P = (Pϑ,η : ϑ ∈ Θ, η ∈ Ξ)

ϑ ∈ Θ Parameter of interest (Hj ⊂ Θ, 1 ≤ j ≤ m),
η ∈ Ξ Nuisance (copula) parameter

representing the dependency structure

Fundamental assumption: η does not depend on ϑ.

FWER control in the extended model:

sup
ϑ∈Θ,η∈Ξ

FWERϑ,η(ϕ)
!
≤ α.

LFC ϑ∗ ∈ H0: Put P∗η = Pϑ∗,η and FWER∗η(ϕ) = FWERϑ∗,η(ϕ).



STPs with p-value copulae Asymptotics Copula calibration Application

Empirical calibration of critical values
We recall for a multiple test ϕ with test statistics T1, . . . ,Tm and
critical values c1, . . . , cm under our general assumptions 1. - 3.:

FWERϑ,η(ϕ) ≤ FWER∗η(ϕ) = P∗η

 m⋃
j=1

{Tj > cj}


= 1− Cη(F1(c1), . . . ,Fm(cm)).

Empirical calibration of ϕ:

• Assume that the dependence structure of T is determined
by the copula function Cη0 , η0 ∈ Ξ.

• Utilization of an estimate η̂ for η0 leads to the empirically
calibrated critical values ĉ = c(η̂) and the calibrated test ϕ̂.

• Calibrated local significance levels: Take u(η̂) from the set
C−1
η̂ (1− α) and put α(j)

loc. = 1− uj(η̂), 1 ≤ j ≤ m.
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Regard FWER∗η0
(ϕ) as a derived parameter of the

copula model for T.

Theorem:
Assume that Cη0 ∈ {Cη|η ∈ Ξ ⊆ Rp}, p ∈ N.

Suppose an estimator η̂n : Ω→ Ξ of η0 fulfilling

√
n(η̂n − η0)

d→ Np(0,Σ0) as n→∞.

Then, under standard regularity assumptions, it holds:

a) Asymptotic Normality (Delta method)

√
n
(
FWER∗η0

(ϕ̂)− α
) d→ N (0, σ2

η0
).

b) Asymptotic Confidence Region (σ̂2
n consistent for σ2

η0
)

lim
n→∞

P∗η0

(√
n

FWER∗η0
(ϕ̂)− α
σ̂n

≤ z1−δ

)
= 1− δ.
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Three ”inversion formulas”
Lemma:
X and Y real-valued random variables with marginal cdfs FX and FY

and bivariate copula Cη, depending on a copula parameter η.

σX,Y : Covariance of X and Y
ρX,Y : Spearman’s rank correlation coefficient (population version)
τX,Y : Kendall’s tau (population version)

Then it holds:

σX,Y = f1(η) =

∫
R2

[Cη{FX(x),FY(y)}

−FX(x)FY(y)] dx dy,

ρX,Y = f2(η) = 12
∫

[0,1]2
Cη(u, v) du dv− 3,

τX,Y = f3(η) = 4
∫

[0,1]2
Cη(u, v) dCη(u, v)− 1.
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Example: Gumbel-Hougaard copulae
(One-parametric Archimedean copula)

Cη(u1, . . . , um) = exp

−
 m∑

j=1

(− ln(uj))
η

1/η
 , η ≥ 1.

Taking m = 2, we obtain

τη =
η − 1
η

and, consequently,

η = (1− τ)−1. (1)

Thus, η can easily be calibrated by a method of moments
(plug-in of an augmented sample version of τ into (1)).
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Gumbel-Hougaard copulae and max-stability

Proposition: (max-stability of Gumbel-Hougaard copulae)
For all η ≥ 1 and (u1, . . . , um)> ∈ [0, 1]m, it holds:

1. Cη is a max-stable copula, i. e.,

∀n ∈ N : Cη(u1, . . . , um)n = Cη(un
1, . . . , u

n
m).

2. It exists a family of copulas such that for any member C, it holds

lim
n→∞

(
C(u1/n

1 , . . . , u1/n
m )
)n

= Cη(u1, . . . , um).

=⇒ Applications of Gumbel-Hougaard copulae
in multivariate extreme value statistics
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Example: Multiple support tests

X1, . . . ,Xn: sample of iid. random vectors with values in [0,∞)m,
each of which distributed as X = (X1, . . . ,Xm)> with

∀1 ≤ j ≤ m : Xj
d
= ϑjZj, ϑj > 0,

where Zj has cdf. Fj : [0, 1]→ [0, 1].
Parameter of interest: ϑ = (ϑ1, . . . , ϑm)> ∈ Θ = (0,∞)m.

Multiple test problem (ϑ∗j : 1 ≤ j ≤ m given constants):

Hj : {ϑj ≤ ϑ∗j } versus Kj : {ϑj > ϑ∗j }, j = 1, . . . ,m

Test statistics: Tj = max
1≤i≤n

Xi,j/ϑ
∗
j , 1 ≤ j ≤ m

If the copula of X is in the domain of attraction of some Cη,
our theory applies, at least asymptotically.
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An application to exchange rate risks

Consider daily exchange rates:
EUR/CNY, EUR/HKD, EUR/MXN, and EUR/USD.

Data from 01/07/2010 to 30/06/2014 (http://sdw.ecb.europa.eu)
were transformed into log-returns.

Entire sample was split into two sub-samples, where the first
sub-sample consists of the data for the first three years.

Research question:
For which of the four time series does the tail behavior of the
returns remain stable during the fourth year of analysis?
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Stochastic model for extreme returns
It is common practice to model excesses over large thresholds
u by generalized Pareto distributions (GPDs) with cdf

Gξ,ϑ(x) =

{
1− (1 + ξx/ϑ)−1/ξ, ξ 6= 0,

1− exp(−x/ϑ), ξ = 0,

where x ≥ 0 for ξ ≥ 0 and 0 ≤ x ≤ −ϑ/ξ if ξ < 0.

Table: Maximum likelihood estimates of the GPD parameters based
on data from 01/07/2010 until 30/06/2013

Parameter EUR/CNY EUR/HKD EUR/MXN EUR/USD
ξ -0.18027 -0.14824 -0.05606 -0.22055

(0.09342) (0.09707) (0.10757) (0.06810)
ϑ 0.00315 0.00309 0.00485 0.00403

(0.00046) (0.00046) (0.00076) (0.00044)
x0 = u− ϑ/ξ 0.02503 0.02868 0.09441 0.02620
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Results of the data analysis on second sub-sample

Table: Lower confidence limits for ϑj and x0,j, 1 ≤ j ≤ 4, for the second
time period from 01/07/2013 until 30/06/2014

ϑj
EUR/CNY EUR/HKD EUR/MXN EUR/USD

Bonferroni 0.002384 0.002189 0.002248 0.002691
Šidák 0.002387 0.002192 0.002253 0.002694

Gumbel Gη̂ 0.002510 0.002321 0.002449 0.002809
x0,j

EUR/CNY EUR/HKD EUR/MXN EUR/USD
Bonferroni 0.020769 0.022605 0.047982 0.020143

Šidák 0.020784 0.022625 0.048063 0.020155
Gumbel Gη̂ 0.021465 0.023501 0.051565 0.020678
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