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Bootstrap Topics Day 1Bootstrap Topics Day 1

• Introduction to Bootstrap
• Wide Variety of Applications 
• Estimating Bias
• Error Rate Estimation in Discriminant Analysis
• Confidence regions and hypothesis tests



Bootstrap Topics Day 2Bootstrap Topics Day 2

• Examples of bootstrap applications:  (1) P-value 
adjustment - consulting example, (2) Confidence 
Interval for Process Capability Cpk, (3) Bioequivalence -
Efron’s Patch Data example

• Examples where bootstrap is not consistent: (1) infinite 
variance case for a population mean, (2) extreme 
values, (3) survey sampling

• Available Software
• Efficient Algorithms in SAS
• Examples with Software Solutions 



IntroductionIntroduction

• The bootstrap is a general method for doing statistical 
analysis without making strong parametric assumptions.

• Efron’s nonparametric bootstrap, resamples the original 
data.

• It was originally designed to estimate bias and standard 
errors for statistical estimates much like the jackknife.



Introduction (continued)Introduction (continued)

The bootstrap is similar to earlier techniques which are also
called re-sampling methods:
(1) jackknife, 
(2) cross-validation, 
(3) delta method, 
(4) permutation methods, and 
(5) subsampling.
• It is called bootstrap because Efron viewed it as an analysis 

tool based solely on the data.  
• The data are the bootstraps and the statistician does 

inference by “picking himself up by his own bootstraps” as 
was attributed to the fictional Baron von Münchausen.



Introduction (continued)Introduction (continued)

The technique was extended, modified and refined   
to handle a wide variety of problems including:

(1) confidence intervals and hypothesis tests, 
(2) linear and nonlinear regression, 
(3) time series analysis, 
(4) complex survey sampling data, 
(5) missing and censored data, 
(6) spatial data analysis, 
(7) point processes, and 
(8) model subset selection.



Introduction (continued)Introduction (continued)

• The bootstrap has now seen applications in many disciplines including:

(1)process capability, (2) reliability, (3) communications,

(4) image and signal processing, (5) auditing, (6) meteorology,

(7) sports medicine, (8) chemistry, (9) ornithology, (10) physics, 

(11) political science, (12) ecology, (13) evolution, (14) genetics, 

(15) behavioral sciences, (16) biology and medicine, (17) psychology, 

(18) geology, (19) astronomy, and (20) economics.



Introduction (continued)Introduction (continued)
• Definition of Efron’s nonparametric bootstrap.  
• Given a sample of n independent identically distributed 

(i.i.d.) observations X1, X2, …, Xn from a distribution F 
and a parameter θ of the distribution F with a real valued 
estimator 
θ(X1, X2, …, Xn ), the bootstrap estimates the accuracy of 
the estimator by replacing F with Fn, the empirical 
distribution, where Fn places probability mass 1/n at each 
observation Xi.  



Introduction (continued)Introduction (continued)

• Let X1
*, X2

*, …, Xn
* be a bootstrap sample, that is a sample 

of size n taken with replacement from Fn .  
• The bootstrap, estimates the variance of  

θ(X1, X2, …, Xn )  by computing or approximating the 
variance of  θ* = θ(X1

*, X2
*, …, Xn

* ).



Introduction (continued)Introduction (continued)

• The bias, the median or any other property of 
θ(X1, X2, …, Xn) is estimated by applying the 
bootstrap version of that quantity.

• Sometimes, the bootstrap estimate can be 
obtained analytically, as with the case of the 
standard deviation for a median or mean.  

• However, in most cases the bootstrap estimate 
is approximated by Monte Carlo.



Introduction (continued)Introduction (continued)
• The k θ*s, provide a sample distribution of θs to obtain 

standard deviations, bias or any other property of the 
distribution for θ.

• Note that there is variability among bootstrap samples 
because we sample with replacement.  

• So, in a particular bootstrap sample, some observations will 
appear two or more times and others not at all.

• For estimating standard deviations or biases, k is 
recommended to be at least 100, although some suggest that 
even larger values may be required.  

• For confidence interval estimation or hypothesis testing at 
least 1000 bootstrap replications are recommended.



Introduction (continued)Introduction (continued)
• Statistical Functionals - A functional is a mapping that 

takes functions into real numbers.  
• Parameters of a distribution can usually be expressed as 

functionals of the population distribution.  
• Often the standard estimate of a parameter is the same 

functional applied to the empirical distribution.  
• Such functionals whose arguments are random 

quantities are called statistical functionals.



Introduction (continued)Introduction (continued)
• Statistical Functionals and the bootstrap.
• A parameter θ is a functional T(F) where T denotes the 

functional and F is a population distribution.
• An estimator of θ is θh = T(Fn) where Fn is the empirical 

distribution function. 
• Many statistical problems involve properties of the 

distribution of θ - θh , its mean (bias of θh ), variance, 
median etc.



Introduction (continued)Introduction (continued)

• Bootstrap idea:  Cannot determine the distribution of 
θ - θh but through the bootstrap we can determine, or 
approximate through Monte Carlo, the distribution of  
θh - θ*, where  θ* = T(Fn

*)  and Fn
* is the empirical 

distribution for a bootstrap sample X1
*, X2

*,…,Xn
*

(θ* is a bootstrap estimate of θ).  
• Based on k bootstrap samples the Monte Carlo 

approximation to the distribution of θh - θ* is used to 
estimate bias, variance etc. for θh .  

• In bootstrapping θh substitutes for θ and θ* substitutes for 
θh .   Called the bootstrap principle.



Introduction (continued)Introduction (continued)

• Basic Theory:  Mathematical results show that bootstrap 
estimates are consistent in particular cases.  

• Mathematical tools including Edgeworth and Cornish-Fisher 
expansions are used to demonstrate rates of convergence for 
bootstrap estimates satisfying certain smoothness criteria.

• Basic Idea:  Empirical distributions behave in large samples 
like population distributions.  Glivenko-Cantelli Theorem  tells 
us this.  Shorack (2000) also discusses this.

• The smoothness condition is needed to transfer consistency 
to functionals of Fn, such as the estimate of the parameter θ.



Wide Variety of ApplicationsWide Variety of Applications
• Initially the bootstrap was used as an alternative to the 

jackknife to provide estimates of standard deviations and 
biases in complex estimation problems but for 
independent identically distributed observations (i.i.d.).

• However Efron and others recognized that through the 
power of fast computing the Monte Carlo approximation 
could be extended to many different statistical problems 
(not just i.i.d. situations). 



Wide Variety of Applications (continued)Wide Variety of Applications (continued)

• The bootstrap and other computer-intensive procedures 
such as permutation methods are attractive because 
they free the researcher from restrictive parametric 
assumptions and oversimplified models.

• Often data are skewed, multimodal or have outlying 
values due to heavy-tailed distributions.

• Regression models do not need to be linearized and the 
outcome variable does not even need to be expressed 
as a closed form function of input variables (a computer 
algorithm will do).



Wide Variety of Applications (continued)Wide Variety of Applications (continued)

• The bootstrap has been applied in survival and reliability analyses 
where data are right censored.  

• It is used for subset selection in regression (linear and non-linear) 
and logistic regression.  

• It is used to estimate error rates for discriminant functions.  



Wide Variety of Applications (continued)Wide Variety of Applications (continued)

• It can estimate process capability indices for non-
Gaussian data.  

• It is used to adjust p-values in a variety of multiple 
comparison situations.  

• It can be extended to problems involving dependent data 
including multivariate, spatial and time series data and in 
sampling from finite populations.



Wide Variety of Applications (continued)Wide Variety of Applications (continued)

• It also has been applied to problems involving missing 
data.

• In many cases, the theory justifying the use of bootstrap 
(e.g. consistency theorems) has been extended to these 
non i.i.d. settings.

• In other cases, the bootstrap has been modified to 
“make it work.” The general case of confidence interval 
estimation is a notable example.



Wide Variety of Applications (continuedWide Variety of Applications (continued))
• For some problems, the bootstrap seems to work without 

theoretical justification, but with support from simulation 
studies.  

• A primary example has been the estimation of error rates 
for discriminant functions in small samples where a 
bootstrap variant called  the .632 estimator has been 
shown to be superior to Lachenbruch and Mickey’s 
popular leave-one-out estimator in a variety of situations 
with small training sample sizes.



Wide Variety of Applications (continued)Wide Variety of Applications (continued)
• The bootstrap has been called “computer-intensive” because 

in many of the applications where it is valuable, the Monte 
Carlo approximation is required.  Sometimes a variant called 
bootstrap iteration is even more helpful but it requires much 
more Monte Carlo sample generation.

• However, there are cases where the bootstrap estimate can 
be obtained analytically (e.g. standard error of a sample 
mean, standard deviation of a sample median and censored 
matched pairs test for equality of distributions).  So 
sometimes no Monte Carlo approximation is needed and 
calculations are not intensive at all!



Estimating BiasEstimating Bias

How to do it by bootstrapping.
• Let E(X) denote the expected or mean value of a random 

variable X.  For an estimator θh of a parameter θ, θh - θ
represents our X.  

• The bias of θh is usually defined as 
b = E(θh - θ ).



Estimating Bias (continued)Estimating Bias (continued)
• A bootstrap estimate for the bias b of θh is given by b* = 

E(θ* - θh ).  
• As is common with bootstrapping, a bootstrap estimate 

of θ, θ* takes the place of θh and θh takes the place of θ. 
• The Monte Carlo approximation for the bootstrap 

estimate is BMONTE =Σi (θ*i - θh)/k where θ*i  is the ith
bootstrap sample estimate of θ for 1≤ i ≤ k. 



Estimating Bias (continued)Estimating Bias (continued)

• Generally, the purpose of estimating bias is to improve a 
biased estimator by subtracting an estimate of its bias.  

• Efron took a poor estimate, the re-substitution estimate 
which has a large bias, estimated its bias by bootstrap 
methods and subtracted the estimated bias from the re-
substitution estimate.

• This produced a better estimate of the error rate than the 
best known method at that time (1983).



Estimating Bias (continued)Estimating Bias (continued)

Examples:  
(1) error rate estimation in discriminant analysis (ref. 

Chernick (1999) pp. 50-82 or (2007) pp. 28-44) .  
(2) ratio estimates (Efron’s patch data example { refs. 

Chernick (1999) pp. 86 – 89 or (2007) pp.44-46 and 
Efron and Tibshirani (1993) pp. 126 –133 }).



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant AnalysisDiscriminant Analysis

• Two class discrimination problem:  There are two 
classes of objects along with the variables that differ 
between classes.  

• The objective is to construct a rule to classify objects 
based on the values of the variables.

• Example:  Targets - Reentry vehicles with warheads.  
Decoys - Balloons made to look like reentry vehicles.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• Problem:  Given a training set of feature vectors 
associated with known groups, targets and decoys 
construct a classification or discrimination rule to identify 
unknown objects based on values of the features.

• Given a priori information on the ratio of decoys to 
targets and known densities (or in practice estimated 
densities based on the training data), Bayes theorem 
provides the optimal rule that minimizes the expected 
classification error rates.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• This optimal rule is called the Bayes rule.
• Results:  (1) If the feature vectors are assumed to have a 

multivariate Gaussian distribution with the same 
covariance matrix for each class, the Bayes rule is linear.  
(2) If the feature vectors are Gaussian with different 
covariances by class, the Bayes rule is quadratic. 



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• For more details on the discrimination problem see Duda 
and Hart (1972) or Chernick (1999, 2007) Sections 2.1.2 
and 2.1.3.

• In practice, a form for the discriminant rule is chosen and 
parameters are estimated from training data.  

• Fisher’s linear discriminant rule is one such example.  
• Kernel discriminant rules and quadratic rules are other 

choices.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• Given a discriminant function, we wish to characterize its 
performance based on its error rates.

• The re-substitution method, estimates the error rate by 
classifying the training vectors and counting the proportion 
misclassified.  

• It is very biased in small samples because the rule is fit to the 
same data that it is tested on.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• The picture on the right 
shows discriminant 
function boundaries for a 
two-dimensional two 
class problem.  The Xs to 
the left of the linear 
boundary and the Os to 
the right of the boundary 
are classification errors



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• The leave-one-out method provides an error rate 
estimator first given by Lachenbruch and Mickey (1968).  

• It constructs the classification rule with one training 
vector left out and classifies only the one left out.  

• This is done in turn for each training vector left out.  The 
error rate is the percentage of cases with the left out 
case misclassified.  

• This method takes advantage of all the training data and 
is unbiased.  It use to be very popular.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• However, Efron (1983) showed that the 
leave-one-out method could be improved on by
bootstrapping.
• The basic bootstrap approach takes the 
re-substitution estimate, gets a bootstrap
estimate of its bias and subtracts it from the 
re-substitution estimate to get a good estimate of the
error rate.



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• Efron (1983) introduces the bootstrap, double bootstrap, e0 
and the .632 estimator (all variations on the bootstrap) and 
compares them to the leave-one-out estimate using a variety 
of small sample simulations with Gaussian features.

• The .632 estimator is a weighted average of re-substitution 
and e0, giving weight 0.632 to e0 and weight 0.368 to re-
substitution.

• Other authors including Chernick, Murthy and Nealy (1985, 
1986, 1988a, and 1988b), Chatterjee and Chatterjee (1983) 
and Jain, Dubes and Chen (1987) have done similar small 
sample Monte Carlo comparisons for Gaussian and non-
Gaussian feature distributions with linear and quadratic 
classifiers.  



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• All these papers show advantages to bootstrap type 
estimates particularly the .632 estimator.  

• Efron and Tibshirani (1997) have a modification called 632+ 
which appears to be even better. 

• The following simulation results appear in Chernick (1999) 
and are the summary tables from Chernick, Murthy and Nealy 
(1988b) and Chernick, Murthy and Nealy (1986).  

• The 1986 paper dealt only with Gaussian populations. 
• Results from all the simulations were summarized and the 

various estimators were listed based on how many times they 
ranked first, second or third.  



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• In addition to bootstrap (BOOT), .632 (632), e0, 
resubstitution (APP) and leave-one-out (U) two other 
bootstrap variations, MC and convex bootstrap (CONV) 
were considered.  

• See Chernick, Murthy and Nealy (1985) for definitions.
• Efron (1983) also considered a randomized bootstrap 

which was not consider by other researchers in later 
Monte Carlo studies. 



Estimating Bias Estimating Bias -- Error Rate Estimation in Error Rate Estimation in 
Discriminant Analysis (continued)Discriminant Analysis (continued)

• Chernick, Murthy and Nealy (1988b) compared the same 
estimators for a class of Pearson VII multivariate 
distributions.  

• This family was chosen since the tail behavior of the 
distribution could be controlled by a single parameter m 
and contours of constant probability density are elliptic 
as is also the case for Gaussian densities.  

• The family has second moments for m > 2.5 when p, the 
number of features in the feature vector is 2 and it has a 
first moment only when m > 1.5 and p = 2.  

• For the results we present only the case p = 2 is 
considered.



Table for Comparison of Error Rate Estimators Table for Comparison of Error Rate Estimators -- Pearson VII CasePearson VII Case
from Chernick, Murthy and Nealy (1988b) with ranks based on rootfrom Chernick, Murthy and Nealy (1988b) with ranks based on root

mean square error of estimated error ratemean square error of estimated error rate

Rank     632 MC     e0 BOOT     CONV       U    APP      Total 
– M  =  1.3

First         0      0         2       0 10       0       0             12
Second    3 0         0       9             0           0       0             12    
Third        0      9         0       1             2       0       0             12
Total        3           9         2     10           12       0      0             36

– M = 1.5
First         6          1         8       5           12       0     1            33
Second    8          4         0      14            7           0     0             33    
Third        3        15         2       4             8        0      1             33
Total       17        20       10     23           27           0      2            99



Table for Comparison of Error Rate Estimators Table for Comparison of Error Rate Estimators -- Pearson VII CasePearson VII Case
from Chernick, Murthy and Nealy (1988b) with ranks based on rootfrom Chernick, Murthy and Nealy (1988b) with ranks based on root

mean square error of estimated error ratemean square error of estimated error rate

M  = 2.0
Rank     632 MC e0 BOOT   CONV    U       APP        

Total
First       18        1      3         0 1        0       7          30
Second  10 4      4         2          5        2          3         30    
Third       1         9      3         8          5        0    3          30
Total      29       14    10       10        11       2        13          90

– M  = 2.5
First       21        0      8         1          0        0    3            33
Second  10        3      4         5          4        2        5            33    
Third       1       13      1         6        10        0      2            33       
Total      32      16    13        12       14        2         10           99



Table for Comparison of Error Rate Estimators Table for Comparison of Error Rate Estimators -- Pearson VII CasePearson VII Case
from Chernick, Murthy and Nealy (1988b) with ranks based on rootfrom Chernick, Murthy and Nealy (1988b) with ranks based on root

mean square error of estimated error ratemean square error of estimated error rate

Rank     632      MC     e0 BOOT  CONV    U     APP    Total
– M  =  3.0

First        21       0       6         0 0         0       3          30
Second    9        3       5         3           2         2    6          30    
Third        0        8       1         8          11        1  1          30
Total       30       11     12      11         13        3      10         90



Summary of Table on Pearson VII casesSummary of Table on Pearson VII cases

• When m < 1.7 the convex bootstrap appears to be the 
best with the ordinary bootstrap second.  

• The e0 estimate is also very competitive for low values of 
m.  

• When m is 2.0 or higher the .632 estimate takes over as 
the clear winner.  



Summary of Table on Pearson VII cases Summary of Table on Pearson VII cases 
(continued)(continued)

• Generally the .632 estimate appropriately weight the e0
and re-substitution estimates adjusting for their opposite 
biases.  

• However for low m the pessimistic bias of e0 disappears 
and .632 no longer provides the best weighted average 
of these two estimators.

• Refer to Chernick, Murthy and Nealy (1988b) for 
specifics on individual cases.



Table for Comparison of Error Rate Estimators Table for Comparison of Error Rate Estimators --Gaussian Gaussian 
CasesCases

from Chernick, Murthy and Nealy (1986) with ranks based from Chernick, Murthy and Nealy (1986) with ranks based 
on root mean square error of estimated error rateon root mean square error of estimated error rate

Rank      632   MC    e0 BOOT   CONV   U   APP  Total
First         72      1     29       6            0      0      1      109
Second    21    13     27     23          11      1     13      109
Third         7     20      8       25         37       7      5 109
Total      100    34     64      54         48       8     19   327



Summary of Table on Gaussian casesSummary of Table on Gaussian cases

• The .632 estimator appropriately weights the e0 and re-
substitution estimates to nearly cancel their opposite biases.  

• This make it the clear winner in most of the cases (72 out of 
109).  

• It finishes in the top three in 100 out of the 109 cases.
• See Chernick, Murthy and Nealy (1985, 1986) for a 

discussion of the individual cases.
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References on estimating bias (continued)References on estimating bias (continued)
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References on estimating bias (continued)References on estimating bias (continued)
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Confidence regions and hypothesis testsConfidence regions and hypothesis tests

• The simplest way to generate approximate 
nonparametric confidence intervals by the bootstrap is 
by taking the appropriate percentiles of the bootstrap 
samples, i. e. from the k Monte Carlo replications of 
bootstrap samples.  

• For example a two-sided approximate 95% confidence 
interval for a parameter θ would be obtained as the 
interval from the 2.5 to the 97.5 percentile of the 
distribution of bootstrap samples.

• This method is called Efron’s percentile method.



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• The percentile method and other bootstrap variations may 
require 1000 or more bootstrap replications to be very 
useful.

• The percentile method only works under special conditions.  
• Bias correction and other adjustments are sometimes 

needed to make the bootstrap “accurate” and “correct” when 
the sample size n is small or moderate. 



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Confidence intervals are accurate or nearly exact when 
the stated confidence level for the intervals is 
approximately the long run probability that the random 
interval contains the “true” value of the parameter.

• Accurate confidence intervals are said to be correct if 
they are approximately the shortest length confidence 
intervals possible for the given confidence level.



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• The BCa method, the iterated bootstrap (or double bootstrap) 
and the bootstrap t method are methods for constructing 
bootstrap confidence intervals that are closer to being exact 
(accurate) and correct than the percentile method in many 
circumstances.  

• See Chernick (2007)  pp. 57-65 for details on these 
methods.



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Motivation for percentile method: 
• Hartigan’s typical value theorem was the motivation for 

the percentile method.  
• It applies to random sub-sampling and only for a 

particular class of estimates called M-estimates.  
• Also he assumed that the population distribution had a 

symmetric density.  



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Under those conditions he showed that a particular 
confidence set was exact.

• Efron saw the following analogies: 
(1)  Hartigan’s confidence set was very similar to the 

percentile method confidence set.  
(2) Bootstrap sampling is similar to random sub-sampling.  



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Efron wanted to drop the symmetry and M-estimator 
requirement (perhaps they were not necessary 
conditions).  

• However the percentile method and all other bootstrap 
methods do not give exact confidence intervals.

• Whenever the class of alternative hypotheses is very 
large as is the general “nonparametric” setting for the 
bootstrap there can be no uniformly most powerful test 
and consequently no correct and exact confidence 
interval for the hypothesized parameter (Bahadur and 
Savage [1956])



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Hartigan’s result motivated Efron to propose the 
percentile bootstrap method for confidence intervals.  

• Efron found situations where the percentile method 
works well (namely when there exists a monotone 
transformation φ = g(θ) such that φh =g(θh) has an 
approximate Gaussian distribution).



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• In more general situations modifications have been 
found which work better.  See Chernick (2007) pp.  57-
64.

• Hartigan’s theorem is discussed in Chernick (2007) pp. 
55-57 and Efron (1982) pp 69-73. 



Confidence regions and hypothesis tests Confidence regions and hypothesis tests 
(continued)(continued)

• Hall and Martin have shown the rate at which various 
bootstrap estimates approach their advertised 
confidence levels as the size n of the original sample 
increases.  

• They use Edgeworth and Cornish-Fisher expansions to 
prove these results.  

• See Hall (1992) Chapter 3 or Chernick (2007) Section 
3.1 for more discussion of this.

• See Ewens and Grant (2001) Chapter 12 for another 
nice treatment and comparison with permutation tests.



Four Methods for Setting Approximate Confidence Four Methods for Setting Approximate Confidence 
Intervals for a RealIntervals for a Real--Valued Parameter Valued Parameter θθ

Method Abbrev-
iation 

α-Level Endpoint Correct if 

1. Standard 
Normal 
Approximation 

θS [α] θh + σh z(α) θh ≈ N(θ, σ2) with σ constant 

 
2. Percentile 

 
θP [α] 

 
Gh

-1 (α) 
There exists a monotone transformation such that  
φh=g(θh) where φ= g(θ) and φh ≈  N(φ, τ2) and τ is 
constant 

3. Bias-
corrected 

θBC [α] Gh
-1 (φ{2z0 + z(α)}) There exists a monotone transformation such that  

φh=g(θh) where φ= g(θ) and  φh ≈N(φ-z0τ, τ2) and τ 
and z0 are constant  

4. BCa θBCa [α] Gh
-1 (φ{z0 + [z0 + z(α)]/[1-a(z0 +z(α)]}) There exists a monotone transformation such that 

φh=g(θh) where φ= g(θ) and  φh ≈  N(φ-z0τ0, τ0
2) 

where τ0 = 1+aφ and z0 and a are constant.  
 



More About Confidence regionsMore About Confidence regions
• Results on previous slides depend on the following 

assumptions
(1) asymptotic results apply
(2) distributions are not heavy-tailed or highly skewed

• For small to moderate sample sizes these properties 
may not apply as (1) and (2) may not be satisfied



More About Confidence regions (continued)More About Confidence regions (continued)

• Example:  Estimating the variance of a population
• Chernick and LaBudde (2010) have shown for heavy-

tailed distributions with finite second moments that BCa is 
not always the most accurate bootstrap estimate unless 
the sample size is very large

• This also has implications on the comparison of two 
variances by the bootstrap



Results from Chernick and LaBudde (2010)

• Can we expect small sample behavior of the bootstrap to 
be similar to large sample behavior?

• For estimating variance Chernick and LaBudde 
compared various population distributions and bootstrap 
confidence interval methods to see how they perform in 
terms of coverage.



Results from Chernick and LaBudde (2010)

The key parameters of the simulations are:
nSize: The sample size of the originating data which is to
be bootstrapped.
nReal: The number of bootstrap resamples used to
estimate the bootstrap resampling distribution (The number
of possible unique resamples is always no more than 
nSize nSize).
nRepl: The number of Monte Carlo replications of the entire
experiment, based on generating new samples of size
nSize from the underlying assumed distribution, in order to 
estimate coverage accuracy and other errors of the
bootstrap methodology.



Results from Chernick and LaBudde (2010)
• In the article we reported on the following bootstrap 

methods:
• Normal-t: A parametric Student-t confidence interval, with 

center point the sample variance and the standard error of 
variance estimated from that of the resampling distribution. 
This differs from a parametric normal bootstrap in that the 
percentile of the t distribution with n-1 degrees of freedom is 
used instead of the standard normal percentile.  In 
Hesterberg’s bootstrap chapter (Hesterberg et al. [2003]) it 
is referred to as the bootstrap-t but that confuses it with the 
bootstrap percentile t presented earlier in the chapter.

• EP: Efron percentile interval, with endpoints the plug-in 
quantiles of the resampling distribution. 



Results from Chernick and LaBudde (2010)
• BC: The Efron bias-corrected interval. Simulations have 

shown that the BC method is, as expected, virtually identical 
in estimates to the BCa interval with the acceleration a = 0 
(i.e., adjustment for median bias only). 

• BCa: The Efron bias-corrected-and-accelerated interval, 
with median bias correction and skew correction via a 
jackknife estimate of the (biased) coefficient of skewness 
from the original sample. 

• ABC: The Efron-DiCiccio approximate bootstrap confidence 
interval. 



Results from Chernick and LaBudde (2010)

• Distributions Simulated
– Gamma(2,3) 
– Uniform(0,1) 
– Student’s t with 5 degrees of freedom 
– Normal(0,1) 
– Lognormal(0,1) 



Uniform (0, 1) Distribution: Results for various confidence 
intervals: 

(1) Results: nSize=25, nReal=1000.

Confidence Level Normal-t EP

50% 49.5% 49%

60% 60.4% 57.3%

70% 67.2% 68%

80% 78.4% 77.9%

90% 86.7% 86.8%

95% 92.7% 92%

99% 97.4% 96.5%



Uniform (0, 1) Distribution: Results for 90% confidence intervals:
(2) Results: Sample Size (nSize), Bootstrap samples (nReal) and the number of 

Monte Carlo samples generated (nRepl) are varied and the Asymptotic Confidence 
Level is 90%

Sample Size 
( nSize)

nRepl nReal Normal-t EP ABC BCa

10 64,000 16,000 86.42% 84.31% 81.65% 83.35%
20 64,000 16,000 88.89% 88.11% 88.35% 88.28%
25 64,000 16,000 89.21% 88.66% 88.15% 87.95%
30 64,000 16,000 89.41% 88.98% 88.98% 88.53%
40 64,000 16,000 89.69% 89.36% 88.30% 88.58%
50 64,000 16,000 90.17% 89.86% 89.95% 90.40%
100 64,000 16,000 90.11% 89.97% Not done Not done



ln[Normal(0,1)] Distribution:
Results for 60% coverage.

nSize nRepl nReal Normal-t EP BC ABC BCa 
10 64,000 16,000 22.68% 28.61% 26.52% 20.84% 25.78%
25 64,000 16,000 31.45% 35.87% 35.32% 30.08% 35.95%
50 16,000 16,000 37.02% 40.28% 39.38% 35.59% 40.24%
100 16,000 16,000 41.51% 43.76% 43.19% 40.13% 43.55%
250 16,000 16,000 45.21% 46.80% 46.42% 44.42% 46.68%
1000 16,000 16,000 50.74% 51.59% 48.98% 49.94% 49.28%
2000 16,000 16,000 52.85% 53.64% 52.24% * 52.13%



ln[Normal(0,1)] Distribution:
Results for 80% coverage.

nSize nRepl nReal Normal-t EP BC ABC BCa 

10 64,000 16,000 35.04% 33.76% 35.01% 30.51% 36.74%
25 64,000 16,000 44.84% 43.74% 46.70% 43.90% 48.71%
50 16,000 16,000 51.14% 50.51% 53.11% 51.49% 55.34%
100 16,000 16,000 56.48% 56.19% 58.61% 57.38% 60.54%
250 16,000 16,000 62.26% 62.14% 63.29% 63.06% 64.81%
1000 16,000 16,000 69.31% 69.03% 69.35% * 69.80%
2000 16,000 16,000 71.80% 71.40% 71.28% * 71.58%



ln[Normal(0,1)] Distribution:
Results for 90% coverage.

nSize nRepl nReal Normal-t EP BC ABC BCa 
10 64,000 16,000 39.98% 37.12% 39.38% 37.11% 41.03% 
25 64,000 16,000 50.32% 50.11% 52.52% 53.03% 56.13%
50 16,000 16,000 56.93% 57.39% 60.43% 62.04% 64.63%
100 16,000 16,000 62.93% 63.93% 66.71% 68.50% 70.27%
250 16,000 16,000 69.35% 70.56% 72.74% 74.41% 75.33%
1000 16,000 16,000 77.63% 78.40% 79.59% * 80.81% 
2000 16,000 16,000 80.38% 80.85% 81.83% * 82.36%



ln[Normal(0,1)] Distribution:
Results for 99% coverage.

nSize nRepl nReal Normal-t EP BC ABC BCa 
10 64,000 16,000 49.51% 42.84% 44.92% 34.14% 41.03% 
25 64,000 16,000 60.05% 59.00% 61.68% 65.43% 67.29%
50 16,000 16,000 67.64% 68.90% 71.58% 77.44% 78.06% 
100 16,000 16,000 74.11% 76.45% 78.99% 84.69% 84.82%
250 16,000 16,000 80.93% 83.71% 85.47% 90.16% 89.82%
1000 16,000 16,000 88.49% 90.74% 91.77% * 94.20%
2000 16,000 16,000 91.31% 93.13% 93.83% * 95.49%



Hypothesis testsHypothesis tests
• Since there is a 1-1 correspondence between hypothesis 

tests and confidence intervals, a hypothesis test about a 
parameter θ can be constructed based on a bootstrap 
confidence interval for θ.  

• See Chernick (1999 or 2007) Section 3.2.  
• Examples of hypothesis tests can be found in Section 

3.3 of Chernick (1999 or 2007).
• Advice on which method to use is also given in 

Carpenter and Bithell (2000).  But for cases like those 
studied by Chernick and LaBudde (2008) do not follow 
this advice.
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