How can we deal with outliers?

Outlier in measurement data

Outlier in measurement data

Outlier in measurement data

How to handle extreme outlier?

Probability distributions with "heavier" tails

Performance using these distributions?

Improved robustness to outliers

Improved robustness to outliers

Improved robustness to outliers

Evaluation

Raue et al., Bioinformatics, 2009

C. Maier, C. Loos, and J. Hasenauer. Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics, 33(5):718–725, 2017.

Evaluation

Parameter estimation using Laplace and Huber distribution outperforms alternative methods.

Biointormatics, 33(5):118-125, 2011.

C. N

Literature

Generic methods

- P.J. Huber et al. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35:73-101, 1964.
- K.L. Lange et al. Robust statistical modeling using the t distribution. Journal of American Statistical Association, 84, 881–896, 1989.
- D. Peel, and G. J. McLachlan. Robust mixture modelling using the t distribution. Statistics and Computing, 10, 339–348, 2000.
- A. Tarantola. Inverse Problem Theory and Methods for Model
- Parameter Estimation. SIAM, Philadelphia. 2005.

Application in systems biology

• C. Maier, C. Loos, and J. Hasenauer. Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics, 33(5):718–725, 2017.

How well are the parameters determined?

The "vehicle problem" car freaks face

Task: Given only a few information, find the right vehicle.

 \Rightarrow identifiability problems and uncertainties

Resolving a crime

Task: Find the murderer.

Confidence interval and confidence region

Practical identifiability

Practical identifiability

A model property $g(\theta)$ is called practically identifiable if its confidence interval $CI_{\alpha,g(\theta)}$ is bounded; otherwise it is called practically non-identifiable.

In practices also there definitions are used:

- A parameter θ_i is practically identifiable if CI_{α,θ_i} is in the interior of Θ .
- A parameter θ_i is practically identifiable if CI_{α,θ_i} does not contain zero.

Remark 1: The practical identifiability depends on the confidence level α .

Remark 2: practical identifiability $\Rightarrow \pm$ structural identifiability

How well are the parameters determined? - Profile likelihood calculation

Objective function landscape

Objective function landscape

Efficient optimisation-based uncertainty analysis approach.

All model properties have to be analysed separately.

Objective function landscape

Methods for profile calculation

How well are the parameters determined? - Sampling approaches

Sampling methods

Objective function landscape

Sampling methods

Objective function landscape

Sampling-based uncertainty analysis approach.

Sampling methods

Holistic approach but computationally demanding.

Objective function landscape

Single-chain sampling methods

- Metropolis-Hastings
- adaptive Metropolis
- Riemann manifold Monte Carlo
- delayed rejection Metropolis
- Hamiltonian Monte Carlo

Algorithm start at random $\theta^{(0)}$ repeat generate sample, $\theta' \sim q(\theta | \mu^{(k)}, \Sigma^{(k)})$ accept it with probability $r = \frac{p(\theta'|D)}{p(\theta^{(k)}|D)} \frac{q(\theta^{(k)}|\mu^{(k+1)}, \Sigma^{(k+1)})}{q(\theta'|\mu^{(k)}, \Sigma^{(k)})}$ if rand < r set $\theta^{(k+1)} = \theta'$ else set $\theta^{(k+1)} = \theta^{(k)}$ end until number of desired samples reached

Multi-chain sampling methods

- parallel hierarchical sampling
- parallel tempering

Parallel hierarchical sampling

. . .

Idea: Multiple chains with different proposals for better mixing

Mother chain:
Auxiliary chains:
$$\theta^{(0,0)}, \theta^{(0,1)}, \theta^{(0,2)}, \theta^{(0,3)}, \theta^{(0,4)}, \theta^{(0,5)} \dots$$

 $\theta^{(1,0)}, \theta^{(1,1)}, \theta^{(1,2)}, \theta^{(1,3)}, \theta^{(1,4)}, \theta^{(1,5)} \dots$
 $\theta^{(2,0)}, \theta^{(2,1)}, \theta^{(2,2)}, \theta^{(2,3)}, \theta^{(2,4)}, \theta^{(2,5)} \dots$
 $\theta^{(3,0)}, \theta^{(3,1)}, \theta^{(3,2)}, \theta^{(3,3)}, \theta^{(3,4)}, \theta^{(3,5)} \dots$

Note: For the "in-chain-sampling" any single-chain sample can be used.

Multi-chain sampling methods

- parallel hierarchical sampling
- parallel tempering

. . .

Parallel tempering *Idea:* Sample simpler (tempered) distributions $p_t(\theta|D) = c p(\theta|D)^t p(\theta)$ and use them to bridge different parts of the posterior. $t = 1: \qquad \theta^{(0,0)}, \ \theta^{(0,1)}, \ \theta^{(0,2)}, \ \theta^{(0,3)}, \ \theta^{(0,4)}, \ \theta^{(0,5)} \dots$ $t = 0.5: \qquad \theta^{(1,0)}, \ \theta^{(1,1)}, \ \theta^{(1,2)}, \ \theta^{(1,3)}, \ \theta^{(1,4)}, \ \theta^{(1,5)} \dots$ $t = 0.25; \ \theta^{(2,0)}, \ \theta^{(2,1)}, \ \theta^{(2,2)}, \ \theta^{(2,3)}, \ \theta^{(2,4)}, \ \theta^{(2,5)} \dots$ t = 0.1: $\theta^{(3,0)}$, $\theta^{(3,1)}$, $\theta^{(3,2)}$, $\theta^{(3,3)}$, $\theta^{(3,4)}$, $\theta^{(3,5)}$...

Note: For the "in-chain-sampling" any single-chain sample can be used.

Multi-chain sampling methods

- parallel hierarchical sampling
- parallel tempering

Parallel tempering *Idea:* Sample simpler (tempered) distributions $p_t(\theta|D) = c p(\theta|D)^t p(\theta)$ and use them to bridge different parts of the posterior. $t = 1: \qquad \theta(0,0), \ \theta(0,1), \ \theta(0,2), \ \theta(0,3), \ \theta(0,4), \ \theta(0,5) \dots \\ t = 0.5: \qquad \theta(1,0), \ \theta(1,1), \ \theta(1,2), \ \theta(1,3), \ \theta(1,4), \ \theta(1,5) \dots$ $t = 0.25; \theta^{(2,0)}, \theta^{(2,1)}, \theta^{(2,2)}, \theta^{(2,3)}, \theta^{(2,4)}, \theta^{(2,5)} \dots$ t = 0.1: $\theta^{(3,0)}$, $\theta^{(3,1)}$, $\theta^{(3,2)}$, $\theta^{(3,3)}$, $\theta^{(3,4)}$, $\theta^{(3,5)}$...

Multi-chain approaches can easily exploit parallel architectures.

Benchmarking of methods

Ballnus et al. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. BMC Systems Biology, 11(63), 2017.

Benchmarking of methods

Check the constancy and reproducibility of the results!

Literature

Profile likelihood

- A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and J. Timmer. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(25):1923-1929, 2009.
- H. Hass, C. Kreutz, J. Timmer, and D. Kaschek. Fast integration-based prediction bands for ordinary differential equation models. Bioinformatics, 32(8):1204-1210, 2016.
- P. Stapor, F. Fröhlich, and J. Hasenauer. Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis. Bioinformatics, 34(13):i151-i159, 2018.

Sampling

- H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4):339-354, 2006.
- T.-R. Xu et al. Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Science Signalling, 3(113):ra20, 2010.
- M. Girolami, and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods Journal of the Royal Statistical Society B, 73(2):123-214, 2011.
- S. Hug, A. Raue, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer, and F. J. Theis. Highdimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2):293-304, 2013.
- Ballnus et al. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. BMC Systems Biology, 11(63), 2017.

Literature

Profile likelihood

- A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, and J. Timmer. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 25(25):1923-1929, 2009.
- H. Hass, C. Kreutz, J. Timmer, and D. Kaschek. Fast integration-based prediction bands for ordinary differential equation models. Bioinformatics, 32(8):1204-1210, 2016.
- P. Stapor, F. Fröhlich, and J. Hasenauer. Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis. Bioinformatics, 34(13):i151-i159, 2018.

Sampling

- H. Haario, M. Laine, A. Mira, and E. Saksman. DRAM: Efficient adaptive MCMC. Statistics and Computing, 16(4):339-354, 2006.
- T.-R. Xu et al. Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Science Signalling, 3(113):ra20, 2010.
- M. Girolami, and B. Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods Journal of the Royal Statistical Society B, 73(2):123-214, 2011.
- S. Hug, A. Raue, J. Hasenauer, J. Bachmann, U. Klingmüller, J. Timmer, and F. J. Theis. Highdimensional Bayesian parameter estimation: Case study for a model of JAK2/STAT5 signaling. Mathematical Biosciences, 246(2):293-304, 2013.

Scalability of uncertainty analysis methods is still very limited and limiting!

What tools are available?

Software tools

COmplex PAthway SImulator (COPASI)

- Simple handling of model, experimental data and experimental conditions
- Parameter optimisation

Data2Dynamics (D2D)

- Simple handling of model, experimental data and experimental conditions
- Highly automised
- Multi-experiment fitting for ODEs
- Parameter optimisation and uncertainty analysis

Advanced MATLAB Interface for CVODE and IDAS (AMICI)

- 1st and 2nd order forward sensitivity analysis
- 1st order adjoints sensitivity analysis
- Support for state and output events

Parameter EStimation TOolbox (PESTO & pyPESTO)

- Parameter optimisation
- Uncertainty analysis
- Flexible interface

MEtaheuristics for systems biology and bIoinformatics Global Opt. (MEIGO)

- Flexible toolbox for global optimisation
- Support of integer variables
- Deterministic methods

Software tools

COmplex PAthway SImulator (COPASI)

- Simple handling of model, experimental data and experimental conditions
- Parameter optimisation

Data2Dynamics (D2D)

- Simple handling of model, experimental data and experimental conditions
- Highly automised
- Multi-experiment fitting for ODEs
- Parameter optimisation and uncertainty analysis

Advanced MATLAB Interface for CVODE and IDAS (AMICI)

- 1st and 2nd order forward sensitivity analysis
- 1st order adjoints sensitivity analysis
- Support for state and output events

Parameter EStimation TOolbox (PESTO & pyPESTO)

- Parameter optimisation
- Uncertainty analysis
- Flexible interface

MEtaheuristics for systems biology and bIoinformatics Global Opt. (MEIGO) If you miss a feature, contact the developers. They are often motivated and helpful.

Literature

Software

- S. Hoops et al., COPASI a COmplex PAthway SImulator. Bioinformatics, 22(24): 3067-3074, 2006.
- E. Balsa-Canto, and J. R. Banga. AMIGO, a toolbox for advanced model identification in systems biology using global optimization. Bioinformatics, 27(16):2311-2313, 2011
- J. A. Egea et al. MEIGO: An open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinf., 15(136), 2014
- A. Raue et al. Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems. Bioinformatics, (21):3558-3560, 2015.
- P. Stapor et al. PESTO: Parameter EStimation TOolbox. Bioinformatics, btx676, 2017.
- F. Fröhlich et al. Parameter estimation for dynamical systems with discrete events and logical operations. Bioinformatics, 33(7):1049-1056, 2017.

A large-scale model of cancer signalling

Drug response prediction

Selection of the right drug for the right patient?

Modelling of biochemical reaction networks

Structure of the model?

Mathematical model

Protein-protein interaction network

with several employees of the AlacrisTheranostics GmbH

Mathematical model

Model size

Dataset size

Cell lines: 120 Drugs: 7 Drug concentrations: 8

Do we really need such a "big" model?

Signaling pathways frequently altered in cancer

Sanchez-Vega et al., Oncogenic signaling pathways in The Cancer Genome Atlas, Cell, 173:321–337, 2018

Polypharmacology of anti-cancer drugs

Parameter estimation for models and datasets of this size?

Parameterisation of large-scale pathway model

Tailored optimisation methods

Standard optimisation methods

#cross validations (5) x #local optimisations(10) x #iterations(100) x #parameters(~4000) x #conditions(~5500) = ~10¹¹ ODE solves

x ~2min = ~200k years

Acceleration method

parallelise (~1000x)
 → exploit sparsity (~60x)
 adjoint sensitivities (~1500x) ←
 hierarchical optimisation (~10x)
 total speed-up: ~10⁹

number of parameters

Parameterisation of large-scale pathway model

Tailored optimisation methods

Standard optimisation methods

#cross validations (5) x #local optimisations(10) x #iterations(100) x #parameters(~4000) x #conditions(~5500) = ~10¹¹ ODE solves

x ~2min = ~200k years

Acceleration method

parallelise (~1000x)
→ exploit sparsity (~60x)
adjoint sensitivities (~1500x)

hierarchical optimisation (~10x)

Scalable framework for data-driven modelling.

High-performance computing

with Daniel Weindl Leonard Schmiester and many others

SuperMUC (c) LRZ

with Fabian Fröhlich and many others

Prediction accuracy

Mechanistic model reaches similar performance as well established statistical models.

with Fabian Fröhlich and many others

Prediction of combination therapies

Mechanistic approach outperforms statistical methods.

Questions or comments?

Thanks for your attention!