Experiences with incomplete block designs in Denmark

Kristian Kristensen
Department of Animal Breeding and Genetics
Danish Institute of Agricultural Sciences

Jakob Willas
Department of Variety Testing
Danish Institute of Agricultural Sciences
• Introduction
 – Official variety testing
 – Heterogeneity of fields

• Used incomplete block designs
 – Types of trials
 – Types of designs
 – Layout in the field
 – No. of varieties

• Efficiency of the designs
 – Analyses
 – Relative efficiencies

• Discussion
 – Benefits
 – Drawbacks
Introduction

• Official variety testing
 – Two types of trials in Denmark
 • DUS trials (one trial per crop per year)
 – On one experimental station
 • Performance trials (4-6 trials per crop per year)
 – On experimental stations and private farms
 – Increasing number of varieties to be tested
 – The number of varieties in the trials cannot be determined by the experimenter

• Other trials for different types of research
Introduction

• Heterogeneity of fields
 – Size of experiment
 • Plot size most typical 1.5 m by 10-12 m
 • Size of complete blocks e.g. 150 m by 15 m or 75 m by 30 m or 50 m by 45 m (100 varieties)
 – Previous experiments on the land (crop rotation)
 – Soil heterogeneity
 – Heterogeneous application of e.g. fertiliser
Used incomplete block designs

• Types of trials
 – Distinctness Uniformity and Stability trials
 • Winter Rape, Spring Rape, Yellow Mustard, Sugar Beets, Winter Wheat, Spring Wheat, Winter Barley, Spring Barley, Oat, Grassland Crops
 – Performance trials
 • Winter Rape, Spring Rape, Yellow Mustard, Sugar Beets, Winter Wheat, Spring Wheat, Winter Barley, Spring Barley, Oat, Grassland Crops, Rye, Triticale, Maize and Potatoes
 – BAR-OF (Barley for organic farming)
 • Spring Barley
Used incomplete block designs

• Types of designs
 – α-designs
 – Lattice designs
 – Row-column designs based on α-designs
 – α-designs in split-plots
 – Ad. hoc. designs in a few cases
Used incomplete block designs

• Lay out in the field (principles)
 – Number of plots per incomplete block usually slightly less than $v^{0.5}$
 – Incomplete blocks should cover only one row of plots in the field
 – It should be possible to stop harvesting (and other operations in the field) at the border between two complete replicates
Used incomplete block designs

- Number of varieties in some crops in spring 2003
 - Spring barley: 101
 - Peas: 34
 - Maize: 74

- Since 1979 the number of varieties in the incomplete block designs has ranged from about 12 and up to more than 300
Used incomplete block designs

• Example 1 (α-design)
 – 119 varieties
 – 2 complete replicates
 – 15 incompletes blocks per replicate
 – 8 (7) plots per incomplete block
 – Laid out in 4 rows of plots with up to 63 plots in each
<table>
<thead>
<tr>
<th></th>
<th>30</th>
<th>77</th>
<th>102</th>
<th>63</th>
<th>24</th>
<th>32</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>105</td>
<td>62</td>
<td>41</td>
<td>9</td>
<td>95</td>
<td>51</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>80</td>
<td>61</td>
<td>108</td>
<td>13</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>26</td>
<td>7</td>
<td>117</td>
<td>106</td>
<td>111</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>78</td>
<td>107</td>
<td>53</td>
<td>72</td>
<td>14</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>31</td>
<td>88</td>
<td>14</td>
<td>64</td>
<td>24</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>69</td>
<td>98</td>
<td>26</td>
<td>88</td>
<td>91</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>59</td>
<td>76</td>
<td>29</td>
<td>109</td>
<td>38</td>
<td>89</td>
<td>71</td>
</tr>
<tr>
<td>91</td>
<td>68</td>
<td>50</td>
<td>100</td>
<td>92</td>
<td>37</td>
<td>74</td>
<td>97</td>
</tr>
<tr>
<td>98</td>
<td>81</td>
<td>108</td>
<td>115</td>
<td>69</td>
<td>79</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td>90</td>
<td>50</td>
<td>119</td>
<td>83</td>
<td>42</td>
<td>17</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>65</td>
<td>96</td>
<td>43</td>
<td>53</td>
<td>44</td>
<td>16</td>
<td>93</td>
<td>28</td>
</tr>
<tr>
<td>1</td>
<td>58</td>
<td>94</td>
<td>22</td>
<td>86</td>
<td>78</td>
<td>20</td>
<td>46</td>
</tr>
<tr>
<td>3</td>
<td>114</td>
<td>5</td>
<td>36</td>
<td>7</td>
<td>119</td>
<td>17</td>
<td>63</td>
</tr>
<tr>
<td>52</td>
<td>76</td>
<td>57</td>
<td>110</td>
<td>60</td>
<td>67</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>15</td>
<td>54</td>
<td>27</td>
<td>13</td>
<td>8</td>
<td>112</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>33</td>
<td>84</td>
<td>25</td>
<td>35</td>
<td>49</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>67</td>
<td>41</td>
<td>81</td>
<td>106</td>
<td>5</td>
<td>77</td>
<td>92</td>
<td>55</td>
</tr>
<tr>
<td>97</td>
<td>113</td>
<td>52</td>
<td>103</td>
<td>31</td>
<td>34</td>
<td>86</td>
<td>114</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>9</td>
<td>70</td>
<td>85</td>
<td>28</td>
<td>101</td>
<td>73</td>
</tr>
<tr>
<td>116</td>
<td>56</td>
<td>33</td>
<td>105</td>
<td>83</td>
<td>80</td>
<td>72</td>
<td>87</td>
</tr>
<tr>
<td>75</td>
<td>70</td>
<td>95</td>
<td>59</td>
<td>102</td>
<td>21</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>57</td>
<td>118</td>
<td>99</td>
<td>18</td>
<td>40</td>
<td>104</td>
<td>57</td>
<td>65</td>
</tr>
<tr>
<td>39</td>
<td>54</td>
<td>60</td>
<td>6</td>
<td>48</td>
<td>103</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>107</td>
<td>66</td>
<td>56</td>
<td>47</td>
<td>55</td>
<td>12</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>89</td>
<td>19</td>
<td>79</td>
<td>117</td>
<td>73</td>
<td>36</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>100</td>
<td>82</td>
<td>85</td>
<td>84</td>
<td>74</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>10</td>
<td>44</td>
<td>23</td>
<td>11</td>
<td>87</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>6</td>
<td>66</td>
<td>68</td>
<td>112</td>
<td>45</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>93</td>
<td>11</td>
<td>75</td>
<td>23</td>
<td>25</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>111</td>
<td>58</td>
<td>64</td>
<td>29</td>
<td>99</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>24</td>
<td>32</td>
<td>19</td>
<td>46</td>
<td>20</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
Used incomplete block designs

• Example 2 (Row column based on α-design)
 – 123 varieties
 – 3 complete replicates
 – 16 incompletes blocks per replicate
 – 8 (7 + ’guards’) plots per incomplete block
 – Laid out as row-column design with 24 rows of 16 plots
Analyses of α-designs

(1) $Y_{vb} = \mu + \alpha_v + \gamma_b + E_{vb}$

(2) $Y_{vrb} = \mu + \alpha_v + \beta_r + \gamma_{rb} + E_{vrb}$ Blocks within reps

(3) $Y_{vrb} = \mu + \alpha_v + \beta_r + C_{rb} + E_{vrb}$ Blocks effects random

E_{vb}, E_{vrb} and C_{rb} assumed independent and normal distributed with constant variances, σ^2_E og σ^2_C
Analyses of Row column based on α-designs

(1) $Y_{vsc} = \mu + \alpha_v + \gamma_s + \delta_c + E_{vsc}$

(2) $Y_{vrsc} = \mu + \alpha_v + \beta_r + \gamma_{rs} + \delta_{rc} + E_{vrsc}$ s and c within replicate

(3) $Y_{vrb} = \mu + \alpha_v + \beta_r + C_{rs} + D_{rc} + E_{vrsc}$ s and c effects random

$E_{vsc}, E_{vrsc}, C_{rs}$ and D_{rc} assumed independent and normal distributed with constant variances, σ_E^2, σ_C^2 and σ_D^2
Relative efficiencies

• Sugar beets
 – 13 to 30 varieties
 – 4 to 6 plots per block
 • Root dry matter 1.4 1.0-2.0
 • Top dry matter 1.8 1.0-3.1
 • Sugar weight 1.4 1.0-2.1
Relative efficiencies

• Barley
 – 100 to 123 varieties
 – 8 to 10 plots per block
 • Yield (grain) 1.4 1.0-2.5
 • Relative dry matter in grains 1.4 1.0-1.7
 • RVI 1.9 1.4-2.4
 • Weed coverage 1.4 1.0-2.0
 • Weed counted 1.1 1.0-1.2
 • Disease coverage 1.0 1.0-1.1
Discussion

• Benefits
 – Increased prediction of parameters for variables that seem dependent on soil fertility?
 – More equal variances from trial to trial, as the increase in prediction was greatest in trials with high variability
 – Possible to decrease number of replicates
 – More easy to layout reasonable in field
Discussion

• Drawbacks
 – More complicated design layout
 – Slightly more sensitive to missing observations
 – More complicated analysis
 – No simple connection between registrations and published results