Auswirkungen von Hitzestress auf die Milchleistung in Milchkühen

Regionale Analyse mit Wetter-Modelldaten & Beobachtungsdaten

Anja Eggert
Forschungsinstitut für Nutztierbiologie
Sommertagung der AG Landwirtschaftliches Versuchswesen
22. Juni 2022, Landwirtschaftszentrum Eichhof / Bad Hersfeld
Livestock and Climate Change

Livestock farming contributes to climate change

- Reducing GHG emissions through, e.g.:
 - Decrease number of animals
 - Feed quality
 - Manure management
 - Breeding

Summer heatwaves impact livestock

- Number of extremely hot days (>30°C) is rising
- Heat stress causes, e.g.:
 - Increased risk of health problems
 - Increase in mortality
 - Change in quality and availability of feed

FAO (2016): Livestock and Climate Change
Extreme heat and humidity killed thousands of cattle in Kansas

- >2,000 cattle are known to have died during the heat wave (Kansas Department of Health and Environment)
- Heat, humidity and lack of wind created the “perfect storm” for heatstroke in cattle
- Nighttime temperatures remained high, i.e. animals could not shed the body heat during nights

Heat alerts for Thursday, June 16th, 2022.

Heat stress is a combination of warm temperatures and high relative humidity.

\[THI = (1.8 \cdot T + 32) - (0.55 - 0.0055 \cdot RH) \cdot (1.8 \cdot T - 26) \]
Heat stress is a combination of warm temperatures and high humidity.

\[THI = (1.8 \cdot T + 32) - (0.55 - 0.0055 \cdot RH) \cdot (1.8 \cdot T - 26) \]

- **Thermoneutral range**
 - Need to release metabolic heat through the skin
- **Suffer from heat stress**
 - Changing behavior (stand up, lose salvia, chew less)
Counteract Heat Stress in Dairy Cattle

Negative effects on cow’s health & economic effects on milk production traits

Measures taken to counteract heat stress:

- Modern outdoor climate stables with a large air volume
- Fans for better air movement and pollutant gas removal
- Counteract heat-induced reduced feed intake with a higher energy diet
- ...

https://www.praxis-agrar.de/tier/rinder/hitzestress-bei-kuehen
Heat Stress Studies @FBN

Body temperatures increase by 3-4°C!
Comparison of high resolution observational and grid-interpolated weather data and application to thermal stress on herd average milk production traits in a temperate environment

Jackson M. Mbuthia, Anja Eggert, Norbert Reinsch

Research Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Wilhelm-Roentgen-Allee 2, Dummerstorf 18196, Germany

Mbutihia et. al. 2022

Cooling THI-days as heat load indicator for milk production traits

Jackson M. Mbuthia, Anja Eggert, Norbert Reinsch

1Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Germany

Submitted to Journal: Frontiers in Animal Science
Specialty Section: Animal Physiology and Management
Negative consequences for milk production traits?

Quantification of thermal stress thresholds for milk production traits at herd level

Development of a better heat load indicator

Comparison of high resolution observational and grid-interpolated weather data and application to thermal stress on herd average milk production traits in a temperate environment

Jackson M. Mbuthia, Anja Eggert, Norbert Reinsch

Research Institute for Farm Animal Biology (FBiN), Institute of Genetics and Biometry, Wilhelm-Stahl-Allee 2, Dannenroeder 18196, Germany

Mbuthia et. al. 2022

Cooling THI-days as heat load indicator for milk production traits

Jackson M. Mbuthia1, Anja Eggert1, Norbert Reinsch2

1Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBiN), Germany

Submitted to Journal: Frontiers in Animal Science

Specialty Section: Animal Physiology and Management
Milk Performance Records

- Test-day records provided by LKV Bayern
- 746,705 cows in 12,606 farms from the year 2010 to 2019 (>16 million test-day records)
- Farms located in 786 villages (Swabia & Upper Bavaria)
- Breed: mainly Fleckvieh (77%)
- Traits:
 - Milk yield
 - Protein content & yield
 - Fat content & yield
 - Milk urea
 - Somatic Cell Score (SCS)

https://www.lkv.bayern.de/
Weather Station Data @DWD

- Hourly data obtained from Climate Data Centre Portal (https://cdc.dwd.de/portal/)
- 53 stations distributed in the study area, average distance is 12 km
- Parameters used: air temperature and relative humidity to calculate THI
Numerical Weather Prediction model @DWD

- Consortium for Small-Scale Modelling (COSMO-REA6, https://reanalysis.meteo.unibonn.de/?COSMO-REA6)
- Grid-interpolated data fields with ~6 km horizontal and 1 hour temporal resolution
- Parameters: air temperature and relative humidity to calculate THI
Is the response of a milk production trait to heat stress immediate or delayed?

- Consider: lag 1, 2, 3 days & 3-day moving average
THI Seasonality in Bavaria
- Station Data -
Fitting Reaction Norms

Mixed regression model with quartic Legendre polynomial functions

\[Y_{ijklmnopqrsu} = H_i + P_j + PLS_{jk} + CT_l + CE_m + mon_n + yr_o + yrs_{op} + \sum_{q=0}^{4} \alpha_q Z_q(t) + htd_{is} + e_{ijklmnopqrs} \]

- \(H_i = \) herd effect
- \(P_j = \) multiple regression of % cows in different parities (parity 1, 2 and 3) at each herd and test day
- \(PLS_{jk} = \) lactation stage by parity effect; which is a multiple regression on % of cows in different lactation stages (LS1 – LS10) by parity interaction at each herd and test day
- \(CT_l = \) multiple regression of % cows in a given calving type (single or twins) at each herd and test day
- \(CE_m = \) multiple regression of % cows in a given calving ease category (6 calving ease classes; 0 – easy without assistant to 5 – surgical delivery/fetotomy)
- \(mon_n = \) month effect
- \(yr_o = \) year effect
- \(yrs_{op} = \) year by season interaction effect with following seasons: winter (DJF), spring (MAM), summer (JJA), autumn (SON)
- \(\alpha_q = \) regression coefficients for THI
- \(Z_q = \) covariates of the \(q^{th} \) Legendre polynomial evaluated at THI point \((t) \)
- \(htd_{is} = \) random short-term test-day effect auto-correlated (AR1) within herd
Heat Stress Thresholds

- Good agreement between station data and numerical model
- Heat stress threshold for milk and protein yield: 16°C and 60 THI

Is the response of a milk production trait to heat stress immediate or delayed?

- Smallest residual variance
- Often: 3 days lag, sometimes 3-day moving average

Aus: Mbuthia et al. (2022)
Exploring a new indicator based on degree-day model: Cooling THI-days

\[
\text{coolingTHI-days} = \frac{1}{24} \sum_{i=1}^{t} (\text{THI}_{a,i} - \text{THI}_{b})
\]

Degree day requirements for an insect does not change. But the time needed to gather those degree days is variable.

THI\(_{a,i}\) = mean hourly THI
THI\(_{b}\) = THI threshold (here: THI\(_{b} = 60\))
t = number of hours THI > 60

https://blogs.cornell.edu/yourenewa/2017/11/15/newa-at-a-glance-what-are-degree-days/
Complex, but Reproducible Workflow?

- Calculation of THI degree days
 - based on hourly observations

- distance villages to stations
 - maps, incl. altitude differences

- THI calculated from
 - temp and relhum

- missing filled with
 - next closest station

- farms
 - <LKV_Muenchen>
 - several farms per village

- station data
 - <dwd-obs>
 - data_TU_MN009.csv
 - data_TU_MN009.csv
 - data_RELHUM_TU_MN009.csv

- gridded data
 - <dwd-model>
 - only until 31-Aug-2019

- Bavaria open data
 - <ldbu.bayern.de>
 - + altitude

- villages
 - (lat, lon, alt)

- r_script-fill-gaps-closest-station.R
 - <fill-gaps-closest-station.Rmd>

- r_script-fill-gaps-closest-station.R
 - <fill-gaps-closest-station.csv>

- obs-vill-hours.RData
 - <merge-obs-mod-villages.R>
 - <merge-obs-mod-villages.Rmd>

- obs-mod-vill-hours.RData
 - <r_script-mod-vill-days.R>
 - <obs-mod-vill-days.RData>

- r_script-mod-vill-days.R
 - <obs-mod-vill-days.csv>
 - gridded-data-validation.Rnd
 - scatter plots gridded vs. observations
 - Taylor diagrams
 - some statistics, RMSE, etc.
Complex, but Reproducible Workflow?

- **Bash scripts**
- **Different software:**
 - Climate Data Operators (CDO)
 - R
 - ASReml
- **Open Data:**
 - DWD data (station and numerical model)
 - Bavaria geographic data
- **Licensed data:**
 - Test-day records (LKV Bayern)
- **Metadata & Provenance**
The Turing Way handbook to reproducible, ethical and collaborative data science
Research Institute for Farm Animal Biology (FBN)

Wilhelm-Stahl-Allee 2
18196 Dummerstorf
Germany

Contact

Anja Eggert
eggert@fbn-dummerstorf
@AnjaEggert42