

Drohnenbasierte Datenerfassung in Feldversuchen - Fallbeispiele mit Ansätzen statistischer Auswertungen

Sommertagung AG Landwirtschaftliches Versuchswesen 29. – 30. Juni 2017

Jörg Perner & Felix Reinsch

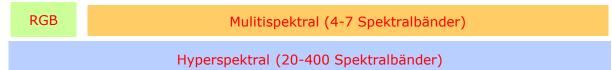
U.A.S. Umwelt- und Agrarstudien GmbH Ilmstraße 6, D – 07749 Jena www.uas-jena.de

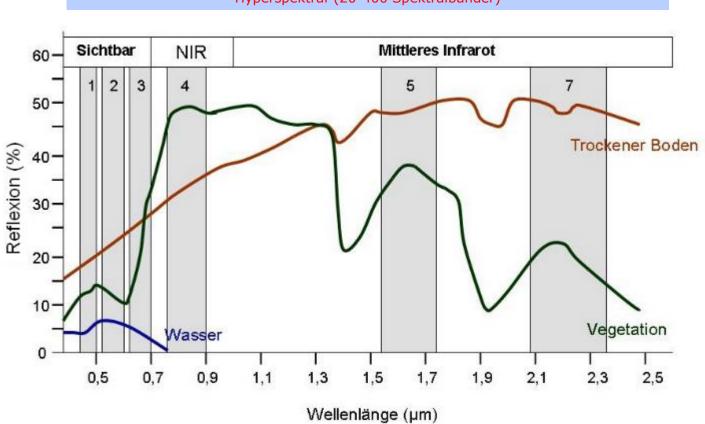
U.A.S. Umwelt- und Agrarstudien

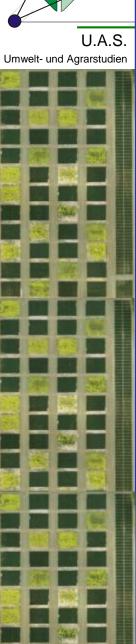
Inhalt

- (1) Drohnen, optische Sensoren und Vegetations-Indizes
- (2) Drohnen als (zusätzliches) Werkzeug in Feldversuchen
- (3) Lager und Bestandeshöhen
- (4) Vitalitäts- und Biomasseabschätzungen
- (5) Ermittlung von Störfaktoren
- (6) Fazit

- Drohnen besser **UAV** (*Unmanned Aerial Vehicle*)
- Copter (z.B. 4-8 Rotoren), Starrflügler, Hybrid-Systeme
- Optische Sensoren/Kamerasysteme: z.Z. RGB- und Multispektral-Kameras gängige Systeme; zunehmend aber auch Hyperspektral-Sensoren

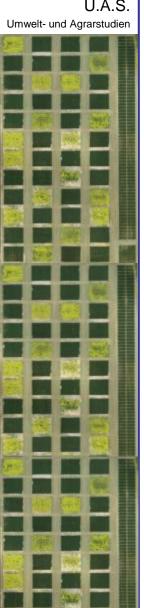






Spektrale Signaturen von Boden, Vegetation und Wasser, sowie die Spektralbänder des Satelliten LANDSAT 7 (in grau).

Quelle: verändert nach Siegmund, Menz 2005; http://www.seos-project.eu



U.A.S.

Gegenüberstellung der 3 optischen Sensoren

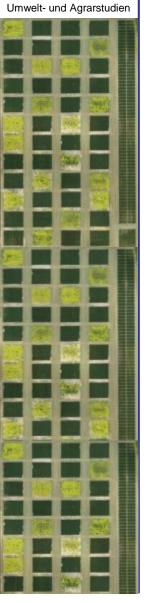
Sensoren/ Eigenschaften	· RGB		Hyperspektral
Wellenlängen- bereiche	380 nm bis 780 nm	780 nm bis 3 μm	380 nm bis 3 μm
Spektralbänder	3	ca. 4 – 7	ca. 20 - 400
Indizes	VARI, RGBVI, GLI, GRVI	NDVI, GNDVI, MSAVI2, NDRE	REIP, elektromagnetische Signatur
Geeignete Anwendungs- gebiete	Vegetationsbedeckung, Störstellen Identifikation / Klassifikationen, Höhen- modelle	Biomasse, Chlorophyllgehalt, N-Gehalt	Krankheiten detektieren, Wasserstress
Kosten	gering	Mittel	hoch

U.A.S.
Umwelt- und Agrarstudien

Verwendete Vegetations-Indizes der am häufigsten genutzten Sensoren

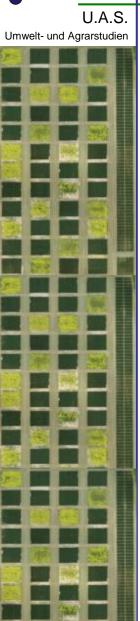
Index	Formel	Quelle	Bereich*	Sensor
Simple Ratio (SR, IR/R)	$\frac{\lambda NIR}{\lambda Rot}$	Jordan (1969)	0 -100	N-Sensor, Crop Spec
Normalized Difference Vegetation Index (NDVI)	$\frac{(\lambda NIR - \lambda Rot)}{(\lambda NIR + \lambda Rot)}$	Rouse et al. (1974)	-1 - + 1	GreenSeeker, Crop Sensor, Isaria, Crop Circle
Normalized Difference Red Edge (NDRE)	$\frac{(\lambda NIR - \lambda 730)}{(\lambda NIR + \lambda 730)}$	(Clarke et al. 2001)	-1 -+ 1	Crop Circle
Soil Adjusted Vegetation Index (SAVI)	$\frac{(\lambda NIR - \lambda Rot)}{(\lambda NIR + \lambda Rot + 0.5)} \cdot 1.5$	Huete (1988)	-1 - + 1.5	Crop Circle
Red Edge Inflection Point (REIP)	$700 + 40 \cdot \frac{\frac{(\lambda 670 + \lambda 780)}{2} - \lambda 700}{\lambda 740 - \lambda 700}$	Guyot et al. (1988)	700 – 760	N-Sensor, Isaria, Crop Spec

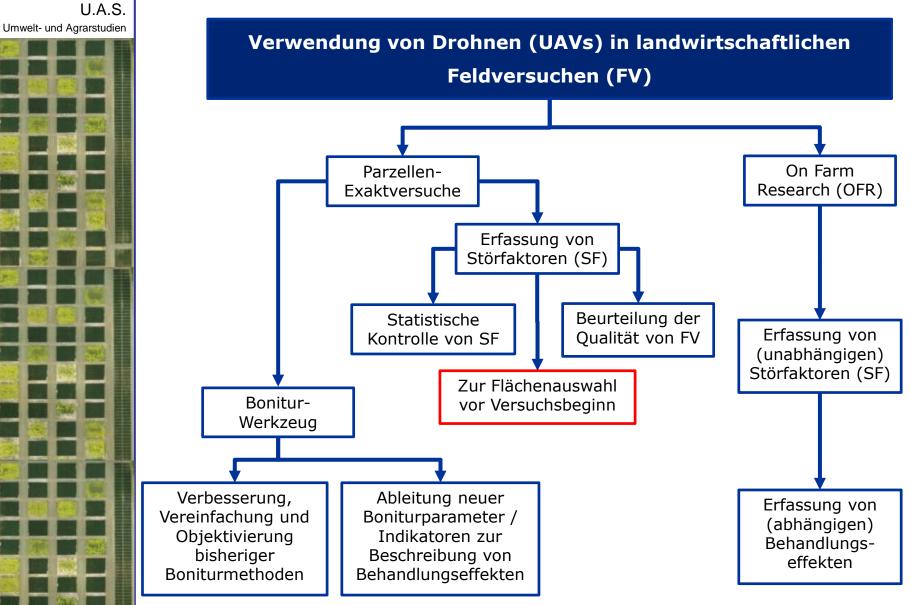
^{*} Einige Hersteller rechnen eigene Faktoren auf den Index


Quelle: H.Lilienthal (2012)

durch Drohnenbefliegung mit (z.Z.) gängigen Multispektralkameras ableitbare Indizes

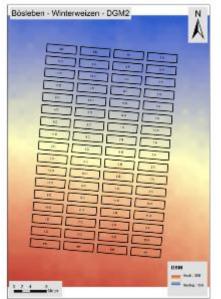
(2) Drohnen als Werkzeug in Feldversuchen

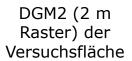

 Bonituren (quantitative und/oder qualitative Beurteilung von Betrachtungsobjekten; engl.: assessments) – die zentrale Methode in Feldversuchen zur Beschreibung des Zustandes bzw. der Veränderung von Kulturen in Abhängigkeit von den Behandlungen

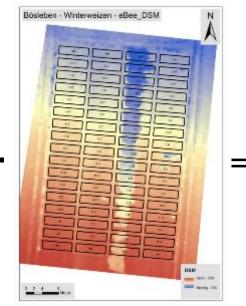

(2) Drohnen als Werkzeug in Feldversuchen

- manuelle (terrestrische) Bonituren sehr arbeitszeitaufwendig
- auch bei standardisierten Boniturmethoden und Schätzskalen subjektive
 Effekte nicht ganz vermeidbar
- durch Befliegungen von Versuchsanlagen mit Drohnen (UAVs) können:
 - terrestrische Bonituren ergänzt, vereinfacht oder ggf. auch ersetzt werden,
 - ggf. auch neue, bisher nicht berücksichtigte, aussagekräftigere Parameter erhoben und
 - objektivere, reproduzierbare Daten erstellt werden
 - Qualitätsbeurteilung, Heterogenität von Versuchsanlagen etc.

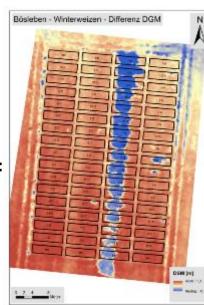
(2) Drohnen als Werkzeug in Feldversuchen


(3) Lager und Bestandeshöhen

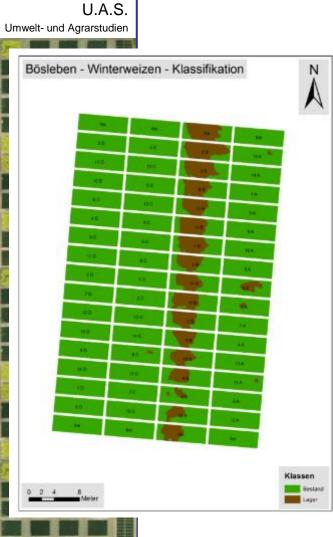


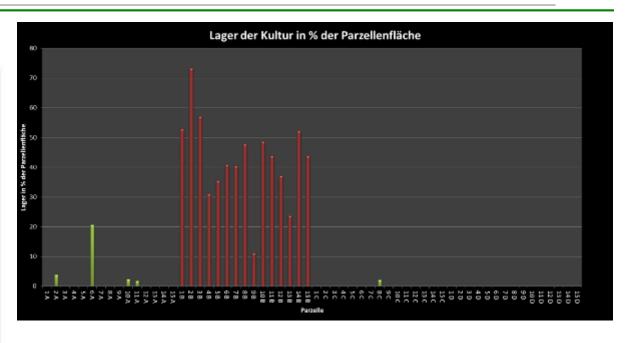

Fungizid-Exaktversuch; 15 Prüfglieder, 4-fach wiederholt; in der Abreife Lager im Versuchsblock B aufgetreten

Befliegung 22.07.2015, RGB-Kamera (eBee AG)



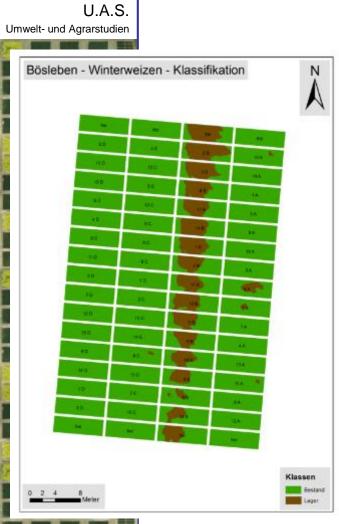
Befliegung, 22.07.2015 von eBee erzeugtes (Digital Surface Model)

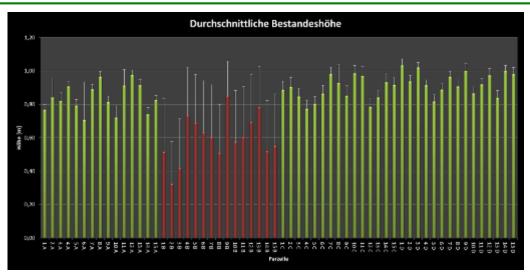


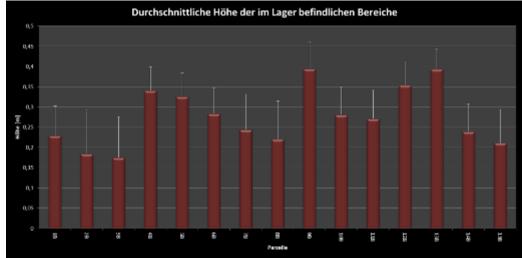

Differenz von DGM2 und DSM (eBee) Bestandeshöhe/Lager

- ermöglicht die Kalkulation der mittleren Bestandeshöhen in den Versuchsparzellen sowie
 - die detaillierte Erfassung des Lagers (Flächenanteil) und Ermittlung der (mittleren Höhe) des lagernden Bestandes

(3) Lager und Bestandeshöhen

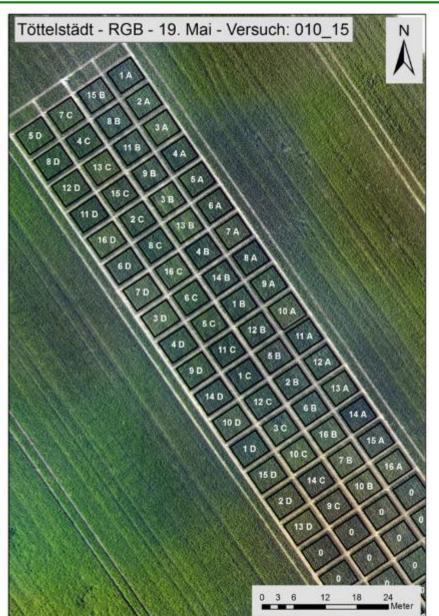





- Klassifikation auf Grundlage des Höhenmodells
- Lageranteile der Versuchsparzellen nach Klassifikation
- ermöglicht detaillierte Erfassung des Lagers in Versuchsparzellen

(3) Lager und Bestandeshöhen

- Ermittlung der mittleren Bestandeshöhen
- Ermittlung der Höhe des lagernden Bestandes

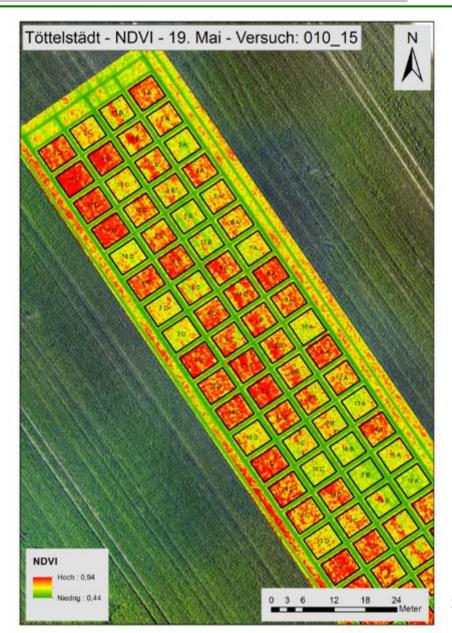


U.A.S.
Umwelt- und Agrarstudien

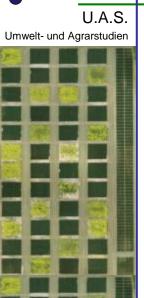
Befliegung 19.05.2015, RGB-Kamera (eBee AG)

Düngungsversuch – zweifaktorieller Exaktversuch im W-Weizen; 4-fach; 2 Applikationstermine

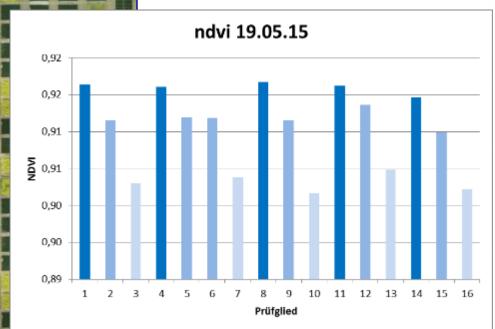
Variante	BBCH 29-31 & 37-39	Anmerkungen
1	unbehandelte Kontrolle	N-Düngung optimal
2	unbehandelte Kontrolle	-33% v. optimal
3	unbehandelte Kontrolle	-50% v. optimal
4	Bakterienpräparat 1 (1,0 l)	N-Düngung optimal
5	Bakterienpräparat 1 (1,0 l)	-33% v. optimal
6	Bakterienpräparat 1 (1,0 l) Blattdünger	-33% v. optimal
7	Bakterienpräparat 1 (1,0 l)	-50% v. optimal
8	Bakterienpräparat 2 (1,25 l)	N-Düngung optimal
9	Bakterienpräparat 2 (1,25 l)	-33% v. optimal
10	Bakterienpräparat 2 (1,25 l)	-50% v. optimal
11	Bakterienpräparat 3 (0,5 l)	N-Düngung optimal
12	Bakterienpräparat 3 (0,5 l)	-33% v. optimal
13	Bakterienpräparat 3 (0,5 l)	-50% v. optimal
14	Bakterienpräparat 4 (0,02 l)	N-Düngung optimal
15	Bakterienpräparat 4 (0,02 l)	-33% v. optimal
16	Bakterienpräparat 4 (0,02 l)	-50% v. optimal

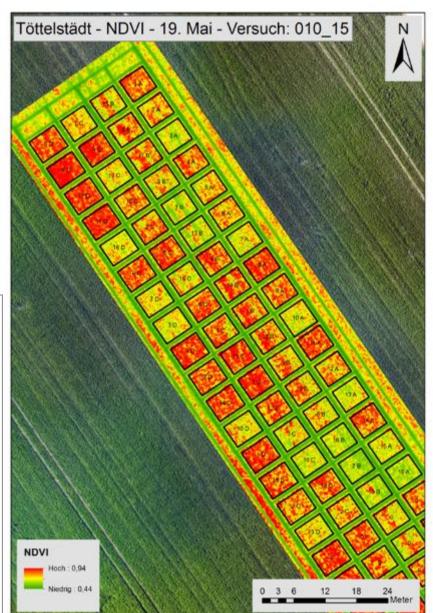


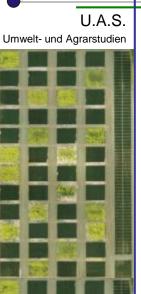
U.A.S. Umwelt- und Agrarstudien


Befliegung 19.05.2015, Multispektral-Kamera, NDVI (eBee AG)

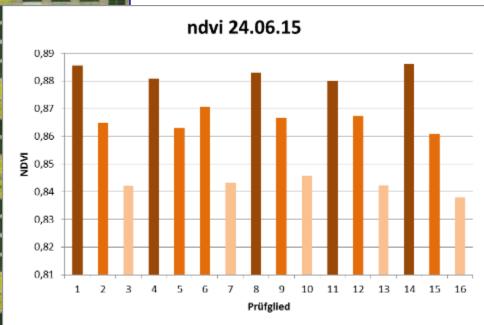
Normalized Difference Vegetation Index

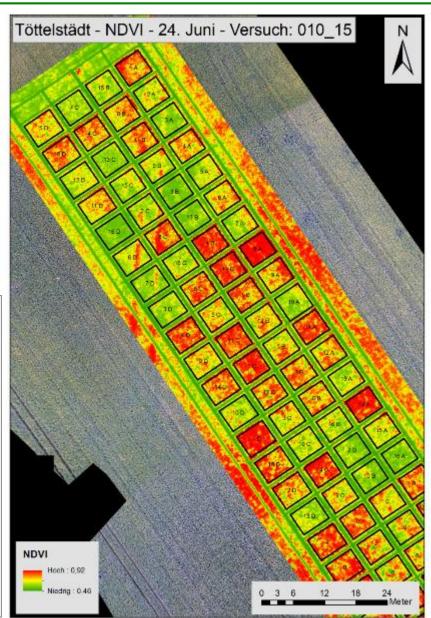

- wird am häufigsten verwendet
- liegt zwischen -1 und +1; je höher desto größer die Biomasse
- Breitbandindex, verrechnet Wellenlängen des nahinfraroten (NIR) mit dem rotem sichtbaren Spektralbereich (RED)
- (NIR-RED)/(NIR+RED)
- Verhältnis von RED- und NIR- Wellenlängenbereichen ändert sich mit der Biomasse der Vegetation
- sinkt die Biomasse und die Chlorophyllaktivität so sinkt auch der NIR-Wert

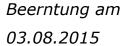


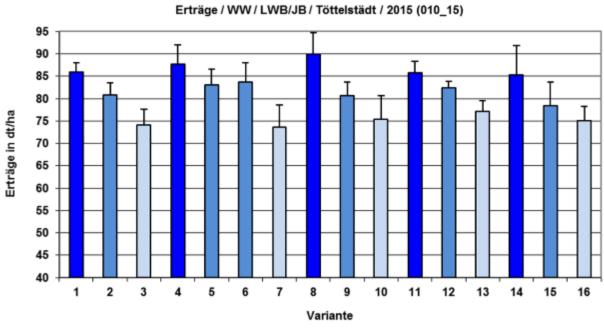


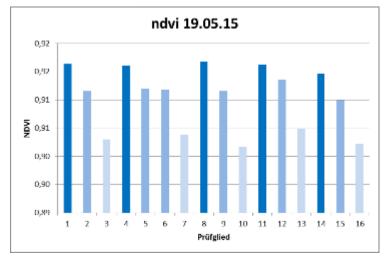
Befliegung 19.05.2015, Multispektral-Kamera, NDVI (eBee AG)

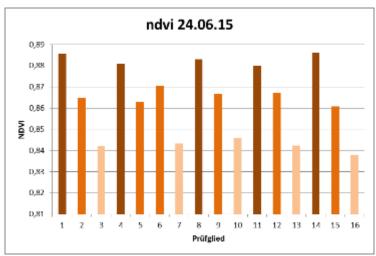




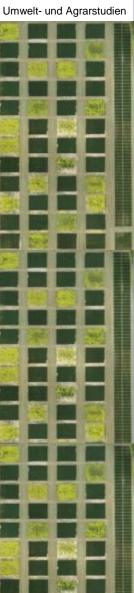

Befliegung 24.06.2015, Multispektral-Kamera, NDVI (eBee AG)











U.A.S.

Statistische Datenanalyse – ANOVA- Ergebnisse

Tests der Zwischensubjekteffekte

Abhängige Variable: ERTRAG

	Quadratsum		Mittel der		
Quelle	mevom Typl	df	Quadrate	F	Signif ikanz
Korrigiertes Modell	1780,510 ^a	18	98,917	7,939	,000
Konstanter Term	421687,891	1	421687,89	33845,782	,000
BLOCK	200,551	3	66,850	5,366	,003
PG	1579,959	15	105,331	8,454	,000
Fehler	560,659	45	12,459		
Gesamt	424029,060	64			
Korrigierte Gesamtvariation	2341,169	63			

a. R-Quadrat = ,761 (korrigiertes R-Quadrat = ,665)

Tests der Zwischensubjekteffekte

Abhängige Variable: NDVI_2

7 toriarigigo Tariabio.					
Quelle	Quadratsum mevom Typl	df	Mittel der Quadrate	F	Signif ikanz
Korrigiertes Modell	1,763E-02 ^a	18	9,797E-04	9,456	,000
Konstanter Term	47,753	1	47,753	460906,6	,000
BLOCK	2,994E-04	3	9,981E-05	,963	,418
PG	1,733E-02	15	1,156E-03	11,154	,000
Fehler	4,662E-03	45	1,036E-04		
Gesamt	47,776	64			
Korrigierte Gesamtvariation	2,230E-02	63			

a. R-Quadrat = ,791 (korrigiertes R-Quadrat = ,707)

Umwelt- und Agrarstudien

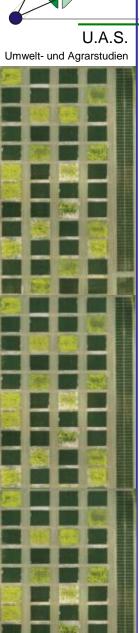
(4) Vitalitäts- und Biomasseabschätzungen – Bsp. Düngungsversuch

Statistische Datenanalyse – Post-Hoc-Tests

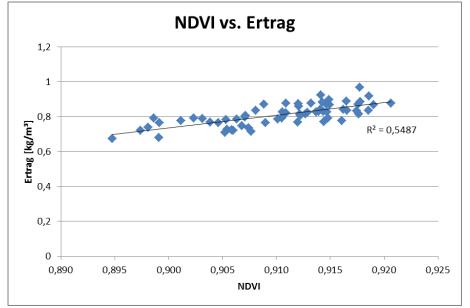
Ertrag (03.08.2015) und NDVI (24.06.2015)

		Untergruppe							
PG	N	1	2	3	4	5	6	7	8
Waller-Duncar ^{a,c} 7	4	73,600							
3	4	74, 125	74,125						
16	4	74,975	74,975						
10	4	75,375	75,375						
13	4	77,050	77,050	77,050					
15	4		78,375	78,375	78,375				
9	4			80,600	80,600	80,600			
2	4			80,850	80,850	80,850			
12	4				82,475	82,475	82,475		
5	4				83,075	83,075	83,075	83,075	
6	4					83,675	83,675	83,675	
14	4					85,350	85, 350	85,350	85,350
11	4						85,725	85,725	85,725
1	4						85, 950	85,950	85,950
4	4							87,650	87,650
8	4								89.900

	∟πrag	ועטעו
	PG	PG
I	7 3	16
ı	3	3
ı	16	3 13
ı	10	7
ı	13	10
	15 9 2 12 5 6	15 5 2 9 12
	9	5
	2	2
	12	9
	5	12
	6	6
I	14	11
	11	4 8 1
	1 4	8
	4	1
ı	Ω	1/


Nahezu identische Reihenfolge der Prüfglieder!

NDVI_2


		Untergruppe				
PG	N	1	2	3	4	5
Waller-Duncar ^{a,c} 16	4	,83775				
3	4	,84200				
13	4	,84250				
7	4	,84325				
10	4	,84575				
15	4		,86100			
5	4		,86300			
2	4		,86525			
9	4		,86650			
12	4		,86750	,86750		
6	4		,87050	,87050	,87050	
11	4			,88000	,88000	,88000
4	4				,88100	,88100
8	4				,88300	,88300
1	4					,88575
14	4					.88600

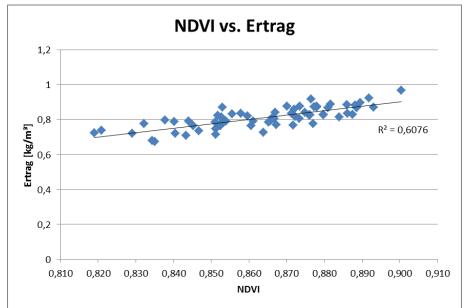
Rangfolge der Prüfglieder

19.05.2015

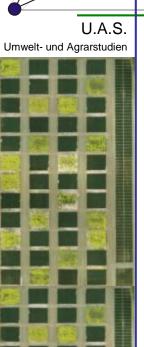
24.06.2015

➤ 6 bzw. auch schon 10

Wochen vor Ernte

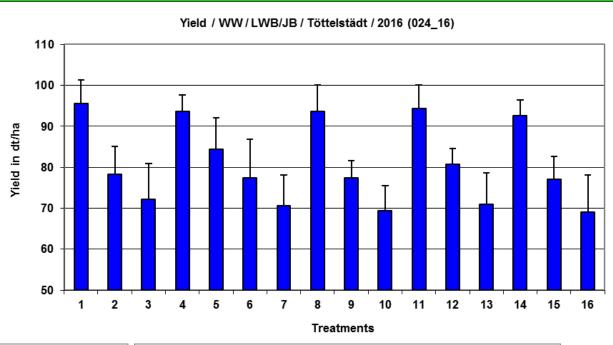

belastbare Aussagen zu

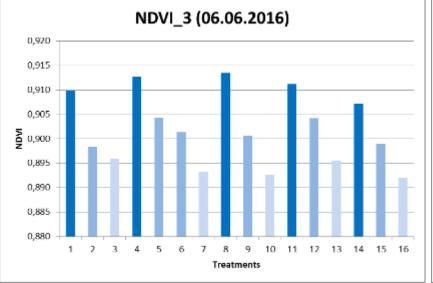
den relativen Erträgen

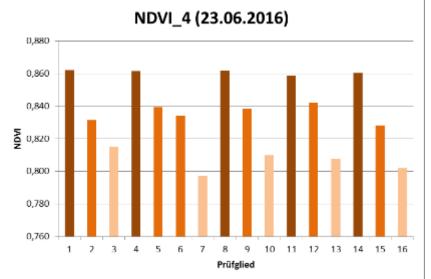

der geprüften Varianten

anhand des NDVI

möglich!

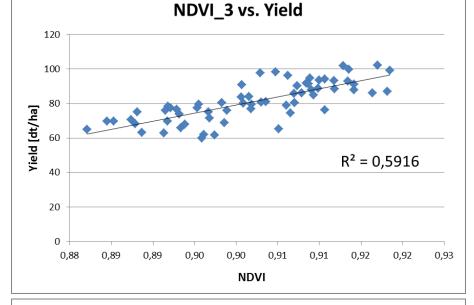




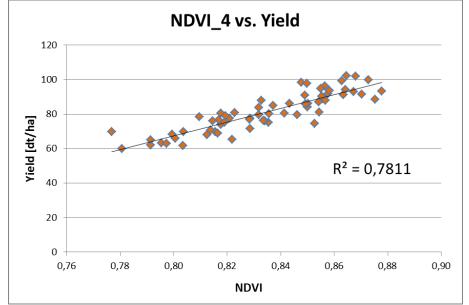


Gleiche Muster auch 2016!

Erträge
Beerntung
am 09.08.2016



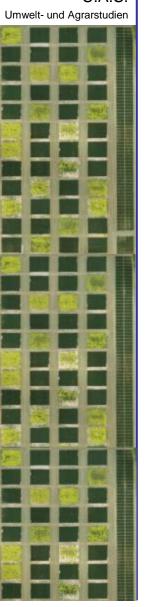
U.A.S. Umwelt- und Agrarstudien

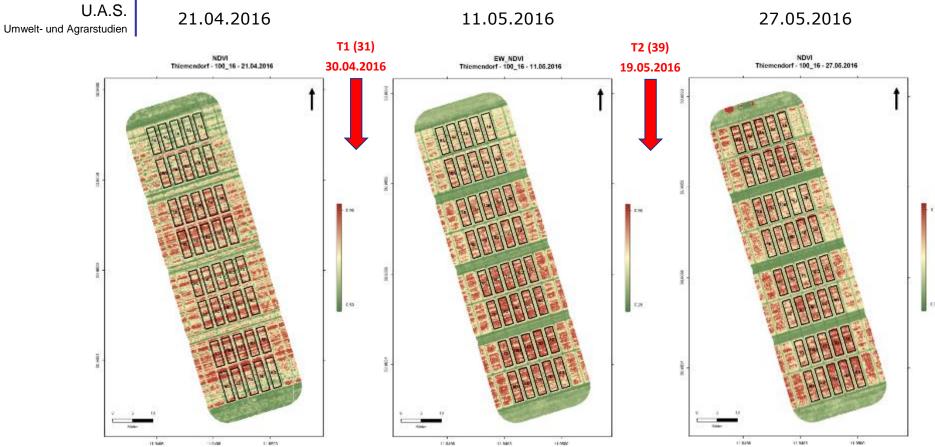

Gleiche Muster auch 2016!

06.06.2016

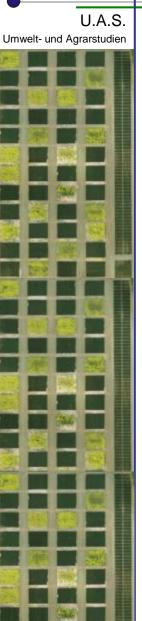
23.06.2015

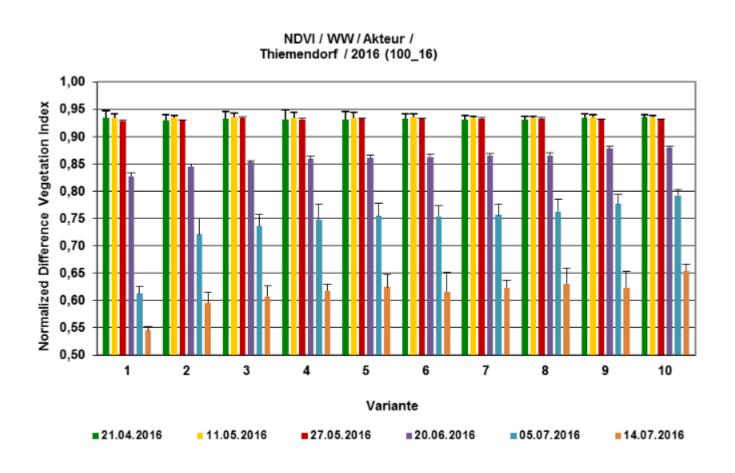
▶ 6 bzw. auch schon 9
Wochen vor Ernte
belastbare Aussagen zu
den relativen Erträgen
der geprüften Varianten
anhand des NDVI
möglich!

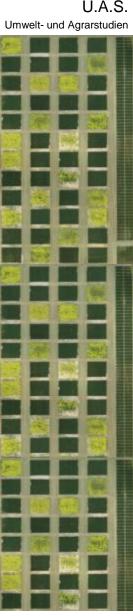



- Fungizidversuch im Winterweizen (Sorte: Akteur; Versuchsstation Thiemendorf)
- Vergleich unterschiedlicher Behandlungsstrategien (-intensitäten)

PG	T1: BBCH 31/32	T2: BBCH 37/39	T3: BBCH 49/55	T4: BBCH 61/65	Anmerkungen
1	-	-	-	-	unbehandelte Kontrolle
2	-	-	FZ 7		Einfachbehandlung
3	FZ 1+FZ 2 + FZ 3		FZ 7		Doppelbehandlung
4	FZ 4		FZ 7		Doppelbehandlung
5	FZ 5		FZ 7		Doppelbehandlung
6	FZ 5 + FZ 3		FZ 7		Doppelbehandlung
7	FZ 5 + FZ 6		FZ 7		Doppelbehandlung
8	FZ 5 + FZ 6 + Add.		FZ 7		Doppelbehandlung
9	FZ 5	FZ 7		FZ 8	Dreifachbehandlung
10	FZ 5	FZ 7		FZ 8 + FZ 9	Dreifachbehandlung







 NDVI – Kombiniertes Maß für Schaderregerbefall und Vitalität (fungizide Effekte, physiologische Effekte)

U.A.S.

Post-Hoc-Tests

21.04.2016

T1 (31) 30.04.2016

11.05.2016

NDVI 1

		Untergruppe
PG	N	1
Tukey-HSD ^{j,t} 2	4	,930025
4	4	,931075
8	4	,931400
7	4	,931425
5	4	,931950
3	4	,932350
6	4	,933125
9	4	,934025
1	4	,934300
10	4	,935525
Signif ikanz		,968

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt.

Basiert auf Typ I Quadratsumme

Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 4,302E-05"

a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000

b. Alpha = 0.05

NDVI_2

		Untergruppe
PG	N	1
Tukey-HSD ^{j,t} 2	4	,933850
4	4	,933875
5	4	,934275
8	4	,934850
7	4	,934850
1	4	,934925
9	4	,935250
6	4	,935350
3	4	,936000
10	4	,936250
Signif ikanz		,993

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt.

Basiert auf Typ I Quadratsumme

Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 1,308E-05'

a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000

b. Alpha = ,05

keine Unterschiede zwischen den PG

keine Unterschiede zwischen den PG

Umwelt- und Agrarstudien

U.A.S.

(4) Vitalitäts- und Biomasseabschätzungen – Bsp. Fungizidversuch

Post-Hoc-Tests

27.05.2016

			ı	NDVI_3			
	PG	N	1	2			
ey -HSD ^{j,b}	1	4	,929100				
	2	4	,929500	,9295			
	9	4	,930875	,9308			
	10	4	,930925	,9309			
	4	4		,9316			
	6	4					
	5	4					

			Onteigrappe					
	PG	N	1	2	3	4	5	6
Tukey-HSD ^{j,b}	1	4	,929100					
	2	4	,929500	,929500				
	9	4	,930875	,930875	,930875			
	10	4	,930925	,930925	,930925			
	4	4		,931675	,931675	,931675		
	6	4			,932275	,932275		
	5	4			,932400	,932400		
	8	4			,932800	,932800		
	7	4			,933000	,933000		
	3	4				,934125		
	Signif ikanz		,283	,114	,132	,050		
Waller-Duncar	·c 1	4	,929100					
	2	4	,929500	,929500				
	9	4		,930875	,930875			
	10	4			,930925	,930925		
	4	4			,931675	,931675	,931675	
	6	4				,932275	,932275	
	5	4					,932400	
	8	4					,932800	,932800
	7	4					,933000	,933000
	3	4						,934125

Untergruppe

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt.

Basiert auf Typ I Quadratsumme Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 1,016E-06".

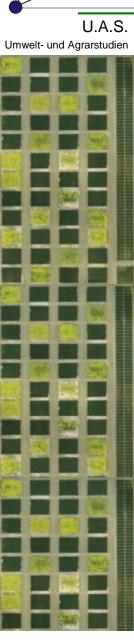
- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- b. Alpha = .05
- c. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.
- z.T. signifikante Unterschiede beim NDVI zwischen den PG

Post-Hoc-Tests

1000110010

20.06.2016

NDVI_4										
					Unterg	ruppe				
	PG	N	1	2	3	4	5	6		
Tukey-HSD ^{3,b}	1	4	,827500							
	2	4		,845350						
	3	4			,853375					
	4	4			,859225	,859225				
	5	4			,861050	,861050				
	6	4				,862725				
	7	4				,865650				
	8	4				,866225				
	9	4					,878225			
	10	4					,879950			
	Signif ikanz		1,000	1,000	,062	,115	,999			
Waller-Duncar ^a	^c 1	4	,827500							
	2	4		,845350						
	3	4			,853375					
	4	4				,859225				
	5	4				,861050				
	6	4				,862725	,862725			
	7	4					,865650			
	8	4					,866225			
	9	4						,878225		
	10	4						,879950		

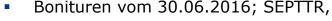

NIDVI 4

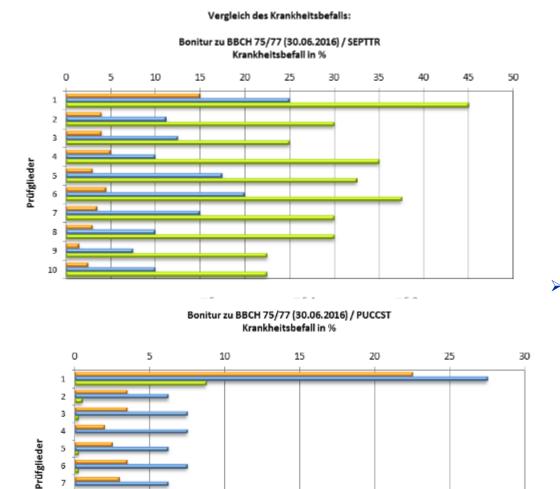
Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt.

Basiert auf Typ I Quadratsumme

Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 1,055E-05".

- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- b. Alpha = ,05
- c. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.
- signifikante Unterschiede beim NDVI zwischen den PG
- zunehmende Differenzierungen zwischen den PG





Umwelt- und Agrarstudien

(4) Vitalitäts- und Biomasseabschätzungen – Bsp. Fungizidversuch

Bonituren vom 30.06.2016; SEPTTR,

F-1

■ F-2

ähnliche Muster wie bei den NDVI 4 und NDVI 5 -Werten

Umwelt- und Agrarstudien

(4) Vitalitäts- und Biomasseabschätzungen – Bsp. Fungizidversuch

Post-Hoc-Tests

05.07.2016

14.07.2016

N	D	٧	ı	5

					Unterg	ruppe		
	PG	N	1	2	3	4	5	6
Tukey -HS® ^{,b}	1	4	,612775					
	2	4		,721625				
	3	4		,736575	,736575			
	4	4		,748600	,748600			
	6	4			,754200	,754200		
	5	4			,755250	,755250		
	7	4			,756825	,756825		
	8	4			,762975	,762975		
	9	4				,777125	,777125	
	10	4					,792450	
	Signif ikanz		1,000	,071	,083	,191	,693	
Waller-Duncar	,c 1	4	,612775					
	2	4		,721625				
	3	4		,736575	,736575			
	4	4			,748600	,748600		
	6	4				,754200		
	5	4				,755250		
	7	4				,756825		
	8	4				,762975	,762975	
	9	4					,777125	
	10	4						,79245

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt.

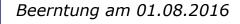
Basiert auf Typ I Quadratsumme

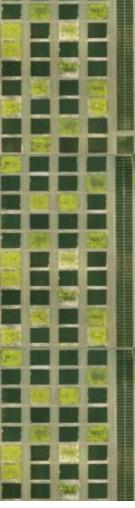
Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 1,355E-04".

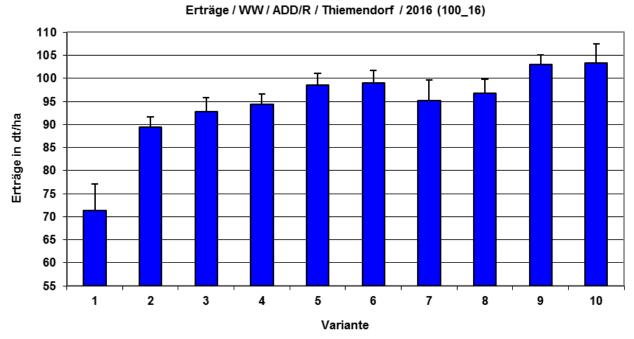
- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- . Alpha = .05
- c. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.

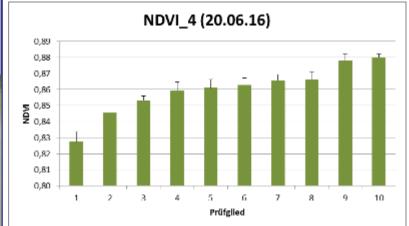
DVI_6

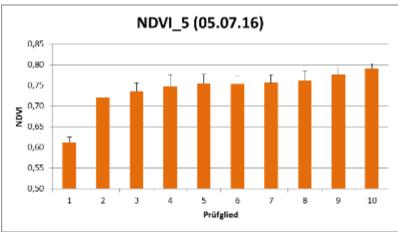
					Untergruppe		
	PG	N	1	2	3	4	5
Tuk ey -HSD ^{1,b}	1	4	,545050				
	2	4		,595950			
	3	4		,607450	,607450		
	6	4		,616225	,616225		
	4	4		,617775	,617775		
	9	4		,623375	,623375	,623375	
	7	4		,623975	,623975	,623975	
	5	4		,624375	,624375	,624375	
	8	4			,631150	,631150	
	10	4				,654500	
	Signif ikanz		1,000	,176	,386	,104	
Waller-Duncara,	: 1	4	,545050				
	2	4		,595950			
	3	4		,607450	,607450		
	6	4			,616225	,616225	
	4	4			,617775	,617775	
	9	4			,623375	,623375	
	7	4			,623975	,623975	
	5	4			,624375	,624375	
	8	4				,631150	
	10	4					,654500

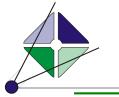

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt. Basiert auf Typ I Quadratsumme

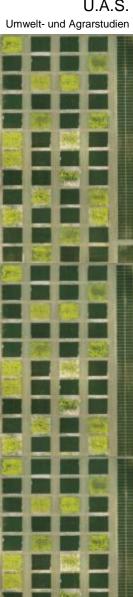

Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 2,018E-04".


- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- D. Alpha = ,0
- c. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.
- teilweise signifikante Unterschiede beim NDVI zwischen den PG
- Mitte Juli wieder abnehmende Differenzierungen (Seneszenz)




U.A.S. Umwelt- und Agrarstudien





U.A.S.

Varianzanalysen (ANOVA)

Tests der Zwischensubjekteffekte

Abhängige Variable: ERTRAG

	Quadratsum		Mittel der		
Quelle	mevom Typl	df	Quadrate	F	Signif ikanz
Korrigiertes Modell	3249,438 ^a	12	270,787	50,653	,000
Konstanter Term	356133,512	1	356133,51	66617,857	,000
BLOCK	213,523	3	71, 174	13,314	,000
PG	3035,915	9	337,324	63,099	,000
Fehler	144,340	27	5,346		
Gesamt	359527,290	40			
Korrigierte Gesamtvariation	3393,778	39			

a. R-Quadrat = ,957 (korrigiertes R-Quadrat = ,939)

Tests der Zwischensubjekteffekte

Abhängige Variable: NDVI 4

Abriangige variable.					
	Quadratsum		Mittel der		
Quelle	me vom Typl	df	Quadrate	F	Signif ikanz
Korrigiertes Modell	8,846E-03 ^a	12	7,372E-04	69,883	,000
Konstanter Term	29,579	1	29,579	2804104	,000
BLOCK	3,473E-04	3	1,158E-04	10,974	,000
PG	8,499E-03	9	9,443E-04	89,520	,000
Fehler	2,848E-04	27	1,055E-05		
Gesamt	29,588	40			
Korrigierte Gesamtvariation	9,131E-03	39			

a. R-Quadrat = ,969 (korrigiertes R-Quadrat = ,955)

Post-Hoc-Tests

ERTRAG

Waller-Duncana,b

				Untergruppe						
	PG	N	1	2	3	4	5	6		
	1	4	71,300							
	2	4		89,350						
	3	4			92,825					
1	4	4			94,450	94,450				
	7	4			95, 125	95, 125				
	8	4				96,700	96,700			
	5	4					98,500			
1	6	1					99 000			
	9	4					,	103,000		
	10	4						103,325		

Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt. Basiert auf Typ I Quadratsumme

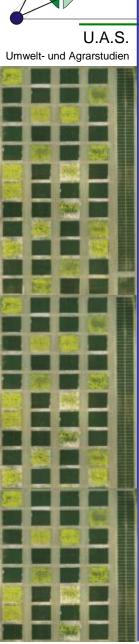
Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 5,346".

- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- b. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.

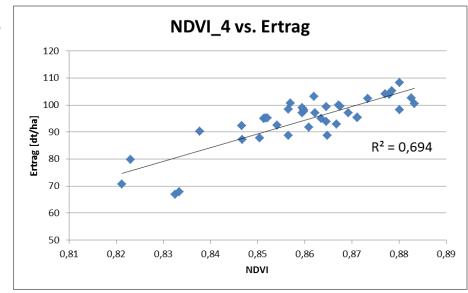
NDVI_4

Waller-Duncana,b

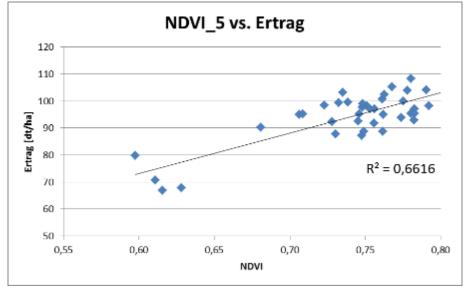
			Untergruppe					
PG	N	1	2	3	4	5	6	
1	4	,827500						
2	4		,845350					
3	4			,853375				
4	4				,859225			
5	4				,861050			
6	4				,862725	,862725		
7	4					,865650		
Q	1					866225		
9	4						,878225	
10	4						,879950	


Die Mittelwerte für Gruppen in homogenen Untergruppen werden angezeigt. Basiert auf Typ I Quadratsumme

Der Fehlerterm ist "Mittel der Quadrate (Fehler) = 1,055E-05".

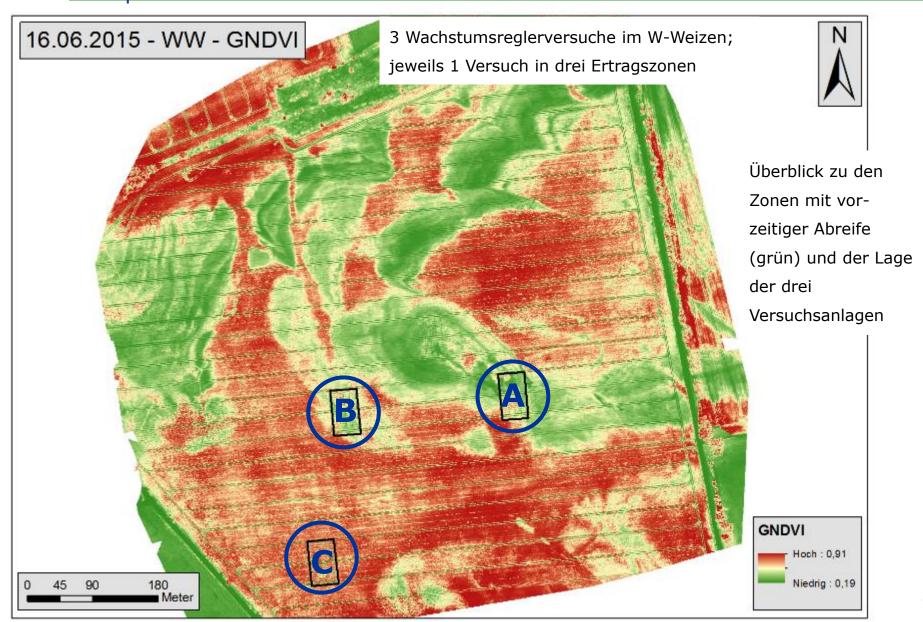

- a. Verwendet Stichprobengrößen des harmonischen Mittels = 4,000
- b. Quotient der Schwere des Fehlers für Typ 1/Typ 2 = 100.

Nahezu identische Reihenfolge der Prüfglieder!

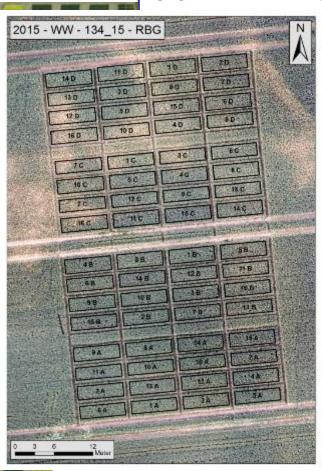


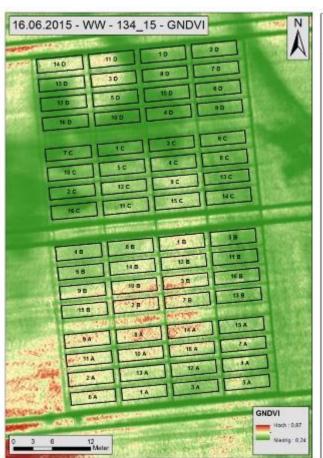
20.06.2016

05.07.2016


➤ 4 bzw. auch schon 6
Wochen vor Ernte
belastbare Aussagen zu
den relativen Erträgen
der geprüften Varianten
anhand des NDVI
möglich!

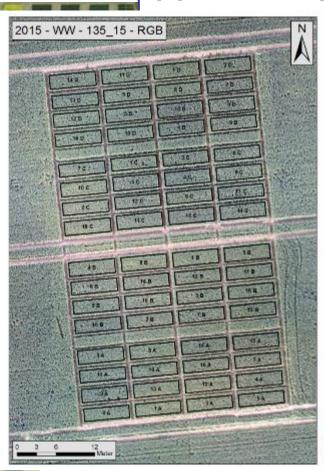
- U.A.S. Umwelt- und Agrarstudien
- zufallsbedingte Variabilität (z.B. in Pflanzenbeständen, Schaderregerbefall, Bodenverhältnisse) kann die Wirkungen der zu untersuchenden Faktoren auf die Kultur überlagern; mit biometrischen Verfahren können diese Zufallseinflüsse eingeschränkt und kontrolliert werden
- statistisch belastbares Versuchsdesign (Wiederholung, Randomisation, Blockbildung etc.) Voraussetzung für Kontrolle zufälliger Effekte in Feldversuchen
- zusätzlich können Drohnen-Befliegungen (bzw. damit erzeugte Vegetationsindizes) helfen ggf. Störfaktoren zu identifizieren und zu quantifizieren (Voraussetzung für statistische Kontrolle)
- Aufnahme der Störfaktoren als Ko-Variable oder Faktoren in das statistische Modell (Kovarianzanalyse); Erhöhung der Aussagekraft (Power) einer statistischen Analyse

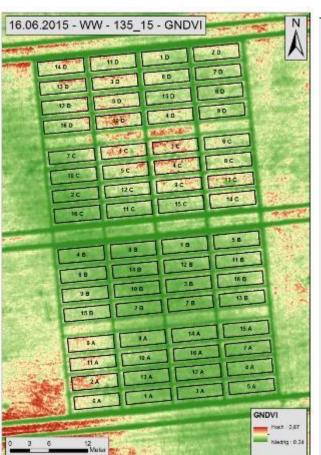


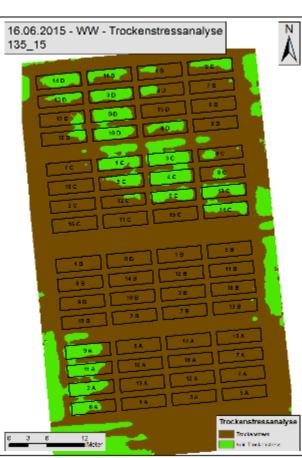


U.A.S. Umwelt- und Agrarstudien

(A) Versuchsanlage in Ertragszone – niedrig

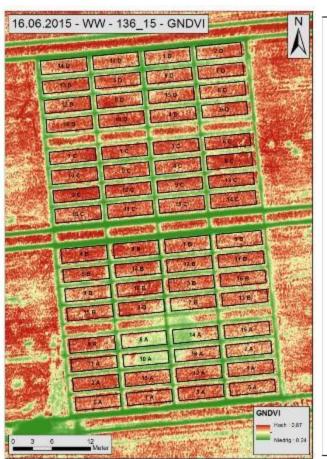


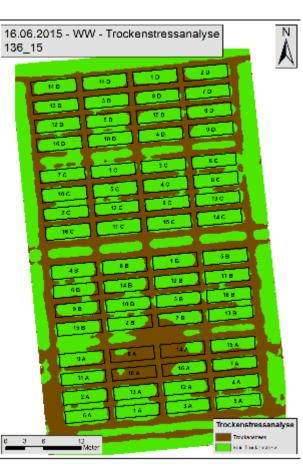

in den Parzellen der Versuchsblöcke D, C und teilweise Parzellen der Blöcke B und A aufgrund von Trockenstress geringere Biomasse- bzw. Chlorophyllanteile in der Kultur (schnellere Abreife)



U.A.S. Umwelt- und Agrarstudien

(B) Versuchsanlage in Ertragszone – mittel


in allen Versuchsblöcken aufgrund von Trockenstress größere Anzahl von Parzellen mit reduzierten Biomasse- bzw. Chlorophyllanteilen und schnellerer Abreife



U.A.S.
Umwelt- und Agrarstudien

(C) Versuchsanlage in Ertragszone – hoch

nur wenige Parzellen im Versuchsblock A mit Anzeichen von Trockenstress und damit verbundenen reduzierten Biomasse- bzw. Chlorophyllanteilen

Umwelt- und Agrarstudien

(5) Ermittlung von Störfaktoren

Statistische Datenanalyse ohne den "Stör"-Faktor Trockenstress

Tests der Zwischensubjekteffekte

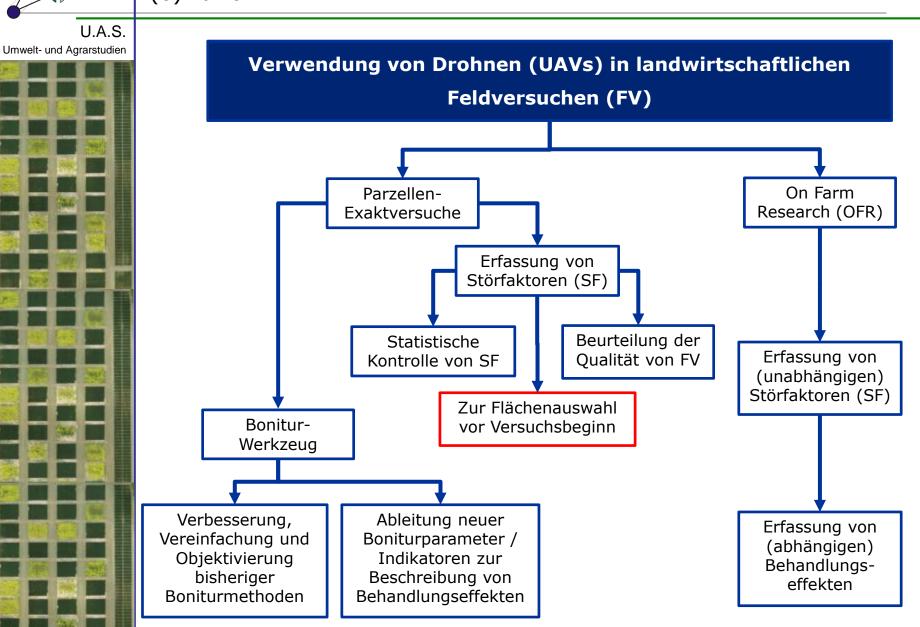
Abhängige Variable: ERTRAG

	Quadratsum		Mittel der		
Quelle	mevom Typl	df	Quadrate	F	Signif ikanz
Korrigiertes Modell	51846,986 ^a	50	1036,940	14,791	,000
Konstanter Term	1711415,388	1	1711415,4	24412,442	,000
E_ZONE	49638,920	2	24819,460	354,037	,000
BLOCK	35, 491	3	11,830	,169	,917
PG	589,078	15	39,272	,560	,901
E_ZONE * PG	1583,496	30	52,783	,753	,817
Fehler	9884,696	141	70,104		
Gesamt	1773147,070	192			
Korrigierte Gesamtvariation	61731,682	191			

a. R-Quadrat = ,840 (korrigiertes R-Quadrat = ,783)

Statistische Datenanalyse unter Berücksichtigung des "Stör"-Faktors Trockenstress

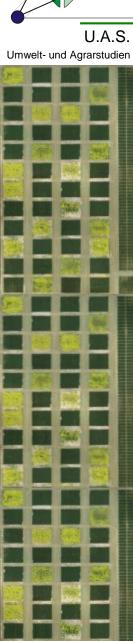
Tests der Zwischensubjekteffekte


Abhängige Variable: ERTRAG

		Quadratsum		Mittel der		
	Quelle	me v om Typ I	df	Quadrate	F	Signif ikanz
	Korrigiertes Modell	61709,470 ^a	186	331,771	74,681	,000
	Konstanter Term	1711415,388	1	1711415,4	385237,0	,000
	T STRESS	32298,634	64	504,666	113,600	000
	E_ZONE	22198,929	2	11099,465	2498,473	,000
	BLOCK	216,469	3	72, 156	16, 242	,005
	PG	796,658	15	53,111	11,955	,006
	T_STRESS * PG	5821,431	95	61,278	13,794	,004
	E_ZONE PG	377,350	7	53,907	12,134	,007
	Fehler	22,213	5	4,443		
	Gesamt	1773147,070	192			
	Korrigierte Gesamtvariation	61731,682	191			

deutlich verbesserte
 Aussagekraft (*Power*) des
 statistischen Modells

a. R-Quadrat = 1,000 (korrigiertes R-Quadrat = ,986)



- U.A.S.
- Vorteile von Drohnen-basierten Luftbildern im Vergleich zu Flugzeugbzw. Satelliten-basierten Luftbildern im Feldversuchswesen:
 - nahezu perfekt passende räumliche Skalen (Drohnen vs.
 Feldversuchsanlagen); darüber hinaus anpassungsfähige räumliche
 Auflösung möglich (über Flughöhen)
 - zeitlich sehr flexibel einsetzbar; aufgrund der Flughöhe Wolkenunabhängig
 - in Abhängigkeit von den Fragestellungen verschiedene Sensoren verwendbar
 - schnelle Datenverfügbarkeit und zeitlich überschaubarer Aufwand
- die detaillierte Erfassung des Lagers (Flächenanteil und mittlere Höhe des lagernden Bestandes) sowie belastbare Ermittlung der mittleren Bestandeshöhen in Versuchsparzellen scheint möglich (...noch weiterer methodischer Optimierungsbedarf)

- U.A.S. Umwelt- und Agrarstudien
- anhand von zwei Fallbeispielen wird für den Winterweizen demonstriert, dass über die Ermittlung des NDVI-Indexes (u.a. auch GNDVI) (i) die Behandlungseffekte (Düngung, Fungizid) adäquat abgebildet und (ii) bereits 6 bis 10 Wochen vor Ernte belastbare Aussagen zu den relativen Erträgen der Behandlungsvarianten (Ertragsmuster) möglich sind.
- mit Drohnen-Befliegungen (bzw. damit erzeugten Vegetationsindizes) können ggf. Störfaktoren identifiziert und quantifiziert werden; Aufnahme der Störfaktoren als Ko-Variable in das statistische Modell (Kovarianzanalyse); Fragen: Ableitung von Schwellenwerten; Korrelation mit Behandlungseffekten...
- durch Einsatz von Drohnen können unabhängige (Störgrößen) sowie abhängige (von Behandlung beeinflusste) Variablen in OFR-Versuchen mit vertretbarem Aufwand erfasst werden; damit könnten OFR zukünftig von zunehmendem Interesse, bzw. besser umsetzbar und auswertbar sein

- Qualitätsbeurteilung von Versuchsanlagen; Ermittlung von belastbaren Ausreißerwerten (Parzellen) auf Grundlage der Streuungen der Pixelwerte (z.B. von Vegetationsindizes) innerhalb einer Parzelle; bei regelmäßigen Befliegungen auch Darstellung der zeitlichen Dynamik möglich...
- mit der Weiterentwicklung von Sensoren und deren Einsetzbarkeit für UAVs ist mit weiteren Einsatzmöglichkeiten zu rechnen (hyperspektral S.)
- dies betrifft insb. die Charakterisierung von Pflanzenkrankheiten sowie die Ermittlung von Unkraut-Befallsdichten in Feldversuchen
- zunehmender Einsatz von Hyperspektral-Sensoren auch im Bereich der UAV-Nutzung zu erwarten...im Zusammenhang mit Phänotypisierung werden diese Sensoren schon sehr erfolgreich eingesetzt (Labor, Feldversuche mit Trägerfahrzeugen)

U.A.S. Umwelt- und Agrarstudien

Die präsentierten Daten entstanden teilweise in einem Projekt der U.A.S. zusammen mit dem DLR und der Hochschule Neubrandenburg finanziert durch die BASF SE (2015) sowie im Rahmen eines Projektes der U.A.S. mit der senseFly Ltd./Schweiz (2016).

Vielen Dank für Ihre Aufmerksamkeit!

Umwelt- und Agrarstudien

Kontakt

U.A.S. Umwelt- und Agrarstudien GmbH Ilmstraße 6 D - 07743 Jena

Tel.: +49 (0) 3641 6281700

Fax: +49 (0) 3641 6281701

http://www.uas-jena.de/

Ansprechpartner:

Dr. Jörg Perner & Felix Reinsch

Tel.: 03641 6281700

E-Mail:

j.perner@uas-jena.de

f.reinsch@uas-jena.de