Use of historical data

Methods, applications and implementation with the R package RBesT

Heinz Schmidli, Sebastian Weber
Novartis, Statistical Methodology and Consulting

Workshop of IBS-GR WG Bayes Methods
Göttingen, Germany, 6th Dec 2018
Introduction

Prior derivation with gMAP

Using MAP priors for clinical trials

Probability of Success

Useful Resources

Excersises

Backup
Introduction
Disclaimer

The views and opinions expressed in this presentation and on the slides are solely those of the presenters and are not necessarily those of Novartis. Novartis does not guarantee the accuracy or reliability of the information provided herein.
Executive Summary

RBesT: R Bayesian evidence synthesis tools

- Facilitates the application of the Meta-Analytic-Predictive (MAP) approach in clinical trials
- RBesT is designed as a modern R library
 - Fully documented with examples
 - Standard R formula syntax supported
 - Fully unit-tested software
 - Fast and accurate analytical computations
- Supports binary, normal (known σ) and Poisson endpoints
- High abstraction level makes (complex) computations straightforward and user-friendly (trial statistician-friendly)
RBesT facilitates applying the MAP Approach
RBesT supports in using historical data for clinical trials

1. Assess historical data for relevance
 - exchangeability assumption justifiable?
 - between-trial heterogeneity τ?

2. Run MAP analysis to obtain informative prior in parametric form
 - Analyse historical data using MCMC (Stan)
 gMAP
 - Approximate MCMC MAP prior with parametric density
 mixfit or automixfit
 - Consider robustification robustify

3. Evaluate frequentist design properties
 oc1S or oc2S

4. Run final analysis
 postmix
Prior derivation with gMAP
Double-blinded POC to test *secukinumab* against *placebo*

- Endpoint is binary ASAS20 at week 6 (higher response rate is better)
- Bayesian design
 - $P(\pi_p - \pi_t \leq 0|y) > 0.95$
 - Placebo: MAP derived,
 \[\pi_p \sim \text{Beta}(11, 32) \]
 - Active:
 \[\pi_t \sim \text{Beta}(0.5, 1) \]
- 4:1 randomization (24 vs 6)
Generalized Meta-Analytic-Predictive model
Hierarchical model to obtain predictive of mean parameter

Y is the (control) group summary data for H historical trials

$$Y_h | \theta_h \sim f(\theta_h) \quad \forall \ h \in [1, H]$$
$$Y_* | \theta_* \sim f(\theta_*) \quad \text{for new trial}$$

Exchangeability assumption:

$$g(\theta_h) | \beta, \tau \sim \text{Normal}(\beta, \tau^2) \quad \forall \ h \in [1, H]$$
$$g(\theta_*) | \beta, \tau \sim \text{Normal}(\beta, \tau^2) \quad \text{for new trial}$$

- f likelihood and g link function
 Binomial/logit, Normal (fixed σ)/identity or Poisson/log
- β population mean with prior $\text{Normal}(m_\beta, s^2_\beta)$
- τ between-trial heterogeneity with prior P_τ
 $\tau \to 0 \implies$ pooling / unbound use of historical data
 $\tau \to \infty \implies$ stratification / no use of historical data
Meta-Analytic-Predictive approach in words

A MAP prior is the predictive for the mean of a future trial

- A MAP analysis is a standard meta-analysis plus a prediction
- $p(\beta|y)$ is the population mean or the typical trial result
- $p(\theta_*|y)$ is the MAP or the predictive distribution for the mean of a future trial
- Between-trial heterogeneity τ critically governs borrowing:
 $\tau \to 0 \Rightarrow$ pooling
 $\tau \to \infty \Rightarrow$ stratification

Ankylosing Spondylitis Example
Conservative prior choices for τ and β

Binary and normal endpoints

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>τ prior</th>
<th>τ prior</th>
<th>β prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary $0.2 < \pi < 0.8$</td>
<td>$N^+(0, 1)$</td>
<td>$N^+(0, (1/2)^2)$</td>
<td>$N(0, 2^2)$</td>
</tr>
<tr>
<td>Normal known σ</td>
<td>$N^+(0, (\sigma/2)^2)$</td>
<td>$N^+(0, (\sigma/4)^2)$</td>
<td>$N(\mu_0, \sigma^2)$</td>
</tr>
</tbody>
</table>

1. very conservative, see Neuenschwander et al., 2010

2. less heterogeneous data as often seen empirically in meta-analysis, see Friede et al., 2016

3. unit-information prior for β (single observation of no effect), see Kass & Wasserman, 1995

μ_0 set problem dependent (often 0)
Detour: Non-informative priors on logit scale?
Consider \(\beta \sim N(0, 10^2) \) on the logit scale:
Detour: Non-informative priors on logit scale?
Consider now a $\beta \sim N(0, 2^2)$ on the logit scale:

N(0,2^2) on a logit scale...

... transformed to 0–1 scale
Running the MAP analysis with \texttt{gMAP}

Let’s apply it to the AS data-set:

\begin{verbatim}
set.seed(123234)
map_mc <- gMAP(cbind(r, n-r) ~ 1 | study, data=AS, family=binomial,
 tau.dist="HalfNormal", tau.prior=1, beta.prior=2)
\end{verbatim}

- \texttt{set.seed} ensures exact reproducibility
- model formula follows standard R conventions
 \texttt{cbind(# responders, # non-responders) \sim 1 \mid study}
- data-set AS (part of RBesT) passed in as \texttt{data.frame}
- \texttt{family} selects likelihood (and link function)
- τ prior must be set (very conservative here)
- β prior \textit{should} be given (very conservative here)
Generalized Meta Analytic Predictive Prior Analysis

Call: gMAP(formula = cbind(r, n - r) ~ 1 | study, family = binomial, data = AS, tau.dist = "HalfNormal", tau.prior = 1, beta.prior = 2)

Exchangeability tau strata: 1
Prediction tau stratum : 1
Maximal Rhat : 1

Between-trial heterogeneity of tau prediction stratum
mean sd 2.5% 50% 97.5%
0.3750 0.2130 0.0375 0.3480 0.8870

MAP Prior MCMC sample
mean sd 2.5% 50% 97.5%
0.2590 0.0877 0.1100 0.2490 0.4740
RBeST supports standard generic functions
Analyses result object have standard query functions

Generics defined for a gMAP analysis object:

<table>
<thead>
<tr>
<th>Function</th>
<th>gMAP context</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>Key analysis printout</td>
</tr>
<tr>
<td>summary</td>
<td>Model summary</td>
</tr>
<tr>
<td>fitted</td>
<td>Fitted responses</td>
</tr>
<tr>
<td>coef</td>
<td>Fitted model parameters</td>
</tr>
<tr>
<td>predict</td>
<td>Obtain predictions (MAP prior with covariates)</td>
</tr>
<tr>
<td>plot</td>
<td>MCMC diagnostics, densities, MAP model forest plot</td>
</tr>
<tr>
<td>as.matrix</td>
<td>obtain MCMC sample (advanced)</td>
</tr>
</tbody>
</table>
Graphical model diagnostics
Standard forest plot with meta-analytic model estimates

```
plot(map_mc, size=0.5)
```

- `forest_plot` function produces customizable forest plots
- Please refer to “Customizing RBeST Plots” vignette for basic customization of `ggplot2` plots
Impact of prior choices
Example: Use less conservative prior for τ

```r
map_mc_alt <- update(map_mc, tau.dist="HalfNormal", tau.prior=0.5)
rbind(summary(map_mc)$tau, summary(map_mc_alt)$tau)
```

```
## mean   sd     2.5%    50%    97.5%
## tau[1] 0.3753758 0.2129691 0.03751009 0.3482959 0.8867479
## tau[1] 0.3354001 0.1778245 0.03811913 0.3151081 0.7574960
```

```r
rbind(summary(map_mc)$theta.pred, summary(map_mc_alt)$theta.pred)
```

```
## mean   sd     2.5%    50%    97.5%
## theta_resp_pred 0.2585327 0.08768081 0.1095699 0.2489713 0.4739009
## theta_resp_pred 0.2571384 0.07744917 0.1248146 0.2492036 0.4468847
```
Using MAP priors for clinical trials
MAP analysis result is a MCMC sample

A MCMC sample of 4×10^3 draws is inconvenient to communicate...
Turning MAP into a parametric density
Parametric densities have many practical advantages

- **Conjugate** priors allow for **fast analytic** manipulations. The posterior is then given by the same distributional class as the prior.

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>Normal (known σ)</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Poisson</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
</tbody>
</table>

- Simple moment matching often not accurate (heavy tails) ⇒ mixtures are arbitrarily accurate and maintain conjugacy
Limitations of Moment Matching

Heavy tails of MAP priors lead to misfit

```r
map_moment_match <- mixfit(map_mc, Nc = 1)
plot(map_moment_match)$mix + ggtitle("Moment matched density of MAP")
```

Moment matched density of MAP
Mixtures improve accuracy of parametric MAP Inference with EM of a 2-component mixture...

```r
map_mix <- mixfit(map_mc, Nc = 2)
plot(map_mix)
$mix + overlay_function(fun = dmix, args = list(mix = map_mix[[1]]),
linetype = 2) + overlay_function(fun = dmix, args = list(mix = map_mix[[2]]),
linetype = 2)
```

ametric Mixture Density (black line) and Histogram of S
Mixtures improve accuracy of parametric MAP
... or automatic AIC based selection for number components

```r
map_automix <- automixfit(map_mc) # fits EM with 1-5 components and selects model with lowest AIC
plot(map_automix)$mix + ggtitle(NULL) + xlab(NULL)
print(map_automix)
```

```
## EM for Beta Mixture Model
## Log-Likelihood = 4443.006
##
## Univariate beta mixture
## Mixture Components:
## comp1 comp2 comp3
## w 0.4802886 0.3950534 0.1246580
## a 6.0794485 28.4176518 2.5062925
## b 17.8864109 86.3824536 5.5103510
```
Generic Interface for Mixtures
Support for mixture Beta, Normal, Gamma & its predictive

- Mixtures are created in RBesT with mixbeta, mixnorm or mixgamma (or via auto/mixfit)
- Mixture components are defined by a triplet \((w_k, a_k, b_k)\)

\[
p(x, w, a, b) = \sum_{k=1}^{K} w_k p_k(x, a_k, b_k)
\]

- All standard R functions are supported \((d/p/q/r)\text{mix}\)

```r
# create a beta mixture with named components
bm <- mixbeta(inf1=c(0.5, 12, 7), inf2=c(0.5, 12, 4))
dmix(bm, x=c(0.1, 0.5))  # density
pmix(bm, q=c(0.1, 0.5))  # cumulative density
qmix(bm, p=c(0.1, 0.5))  # quantile function
rmix(bm, n=100)          # random number generation

# commands work the same for any mixture (replace bm with nm):
rm <- mixnorm(rob=c(0.2, 0, 2), inf=c(0.8, 2, 2), sigma=5)
```
Evaluating trial designs classically
Binary responder analysis

- Type I error α for no effect hypothesis
 $\theta_p = \theta_t$

- Sample size per group N_p & N_t chosen under true effect assumption (alternative) and desired type II error β
 $\theta_p, \theta_t = \theta_p + \delta$

- 1:1 randomization has highest efficiency
 $N_p = N_t$

- Type I error is controlled for any θ at a fixed α under the null
Evaluating trial designs with \texttt{RBesT}

Binary responder analysis

\begin{verbatim}
alpha <- 0.05
1. Define decision criterium for success
here: 2-sample decision criterium, \(P(p_{\text{placebo}} - p_{\text{treat}} \leq 0) > 0.95 \)
decision <- decision2S(1 - alpha, 0, lower.tail=TRUE)

2. Define design (priors, sample size, decision)
uniform_prior <- mixbeta(c(1, 1, 1))
design_uniform_classic <- oc2S(uniform_prior, uniform_prior, 24, 24, decision)

3. Evaluate power (type I error is controlled by design)
design_uniform_classic(0.25, 0.25)

[1] 0.04927474
design_uniform_classic(0.25, 0.25 + 0.35)

[1] 0.8187252
\end{verbatim}
Evaluating trial designs with \texttt{RBesT} using MAP

Using MAP priors allows to reduce (control) sample size

- Informative MAP priors enable unequal randomization by \textit{substituting} sample size of the control by prior information
- An informative prior can be considered to have an \textit{effective sample size} (ess)

```r
## 0. derive MAP prior
## 1. perform classic operating characteristics
## 2. use ess as initial guess for sample size reduction

\texttt{ess(map\_automix, \textbf{"moment"})} \# default (conservative)

\>[1] 24

\texttt{ess(map\_automix, \textbf{"morita"})} \# Morita et al. (2008)

\>[1] 77
```

So we may substantially reduce the control group here!
Operating Characteristic for $N_p = 6$ and $N_t = 24$

First definition of design, then exact calculations (binary case)

Define decision criterium, $P(p_{placebo} - p_{treat} <= 0) > 0.95$

decision <- decision2S(0.95, 0, lower.tail=TRUE)

treat_prior <- mixbeta(c(1, 0.5, 1)) # Prior for treatment arm
placebo_prior <- mixbeta(c(1,11,32)) # Prior for placebo arm as used
uniform_prior <- mixbeta(c(1, 1, 1)) # Uniform prior for comparison
map_robust <- robustify(map_automix, weight=0.2, mean=0.5) # robust MAP

Calculate design properties (depends on priors, sample size & decision)
design_uniform <- oc2S(uniform_prior, uniform_prior, 6, 24, decision)
design_trial <- oc2S(placebo_prior, treat_prior , 6, 24, decision)
design_robust <- oc2S(map_robust , treat_prior , 6, 24, decision)

Note: decision functions take mixtures as arguments and return
0="NO GO", 1="GO"
decision(postmix(map_robust, r=1, n=6), postmix(treat_prior, r=15, n=24))
[1] 1
Analytic Operating Characteristics in RBesT
RBesT calculates OCs for one-sided designs fast

The decision function $D(y_1, y_2)$, priors and sample sizes uniquely define the decision boundary $D_1(y_2)$ (conditional critical values):

$$D_1(y_2) = \sup_{y_1} \{ D(y_1, y_2) = 1 \},$$

$$\int\int f_1(y_1|\theta_1) D(y_1, y_2) f_2(y_2|\theta_2) \, dy_1 \, dy_2 = \int F_1(D_1(y_2)|\theta_1) f_2(y_2|\theta_2) \, dy_2.$$

$D_1(y_2)$ is calculated when calling `oc2S`. Then all calls to the returned function evaluate the frequency for 1 assuming that y_1 (y_2) is distributed according to the assumed true value of θ_1 (θ_2).

Binary case calculation is exact, other endpoints use adaptive quadrature integration.
Operating Characteristics

delta <- c(0, 0.3, 0.6)

oc <- data.frame(theta_p=c(rep(0.25, 3), 0.25+delta),
 theta_t=0.25+delta,
 delta=c(delta, rep(0, 3))) %>%
 mutate(oc_uniform=design_uniform(theta_p, theta_t),
 oc_trial =design_trial(theta_p, theta_t),
 oc_robust =design_robust(theta_p, theta_t))

kable(oc, digits=2)

<table>
<thead>
<tr>
<th>theta_p</th>
<th>theta_t</th>
<th>delta</th>
<th>oc_uniform</th>
<th>oc_trial</th>
<th>oc_robust</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.25</td>
<td>0.55</td>
<td>0.3</td>
<td>0.34</td>
<td>0.82</td>
<td>0.67</td>
</tr>
<tr>
<td>0.25</td>
<td>0.85</td>
<td>0.6</td>
<td>0.91</td>
<td>1.00</td>
<td>0.98</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25</td>
<td>0.0</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>0.55</td>
<td>0.55</td>
<td>0.0</td>
<td>0.04</td>
<td>0.70</td>
<td>0.20</td>
</tr>
<tr>
<td>0.85</td>
<td>0.85</td>
<td>0.0</td>
<td>0.06</td>
<td>1.00</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Type I Error, Frequency of GO for $\theta = \theta_t = \theta_p$

Comparing designs: robust MAP, trial, uniform

![Graph showing Type I Error](image)

Type I Error

Design
- Robust MAP
- Trial design
- Uniform prior

(code for the above plot is in the vignette)
Type I Error, Frequency of GO for $\theta = \theta_t = \theta_p$

Comparing designs: robust MAP, trial, uniform

Type I Error

Realistic Responder Rates of Control
Power, Frequency of GO for $\theta_t = \theta_p + \delta$ ($\theta_p = \bar{\theta}_p$)

Comparing designs: robust MAP, trial, uniform

(code for the above plot is in the vignette)
Power, Frequency of GO for $\theta_t = \theta_p + \delta \ (\theta_p = \bar{\theta}_p)$

Comparing designs: robust MAP, trial, uniform 1:1 (24 vs 24)

(code for the above plot is in the vignette)
Graphical Analysis of Control Densities
robust prior (blue)

\[p(\theta|y) = \frac{p(\theta) p(y|\theta)}{p(y)} \]
Graphical Analysis of Control Densities
robust prior (blue), likelihood / \(p(y) \) (red)

\[
p(\theta|y) = \frac{p(\theta) p(y|\theta)}{p(y)}
\]
Graphical Analysis of Control Densities

robust prior (blue), likelihood / $p(y)$ (red), posterior (black)

$p(\theta|y) = \frac{p(\theta) p(y|\theta)}{p(y)}$
Probability of Success
Getting RBesT and Help
RBesT is integrated into the R system

install.packages("RBesT") ## download and install RBesT from CRAN
library(RBesT) ## load the library
?gMAP ## get help for gMAP
example(gMAP) ## run the example for gMAP
help.search("postmix") ## find help page for postmix

- Inter-linked HTML pages with help.start() opens a web-browser or RStudio help then follow Packages -> RBesT
- PDF reference distributed with RBesT (\LaTeX{} formulas)
- Vignettes
 - introduction: Getting started (binary endpoint)
 - introduction normal: Getting started (normal endpoint)
 - customizing plots: Plotting help
 - robustMAP: Reproduces Schmidli et al. (2014)
 - ...

40 | Use of historical data| S Weber and H Schmidli| Göttingen, Germany, 6th Dec 2018 | Public
Useful Resources
Useful Resources

- RBesT R help
 R> ?gMAP for help on gMAP

- Vignettes

- CRAN: https://cran.r-project.org/package=RBesT
 - Vignettes binary & normal endpoint, plotting
 - Reference PDF manual RBesT.pdf

- Install RBesT (on CONNECT):
 install.packages("RBesT", dependencies=TRUE)

- Using RBesT: library(RBesT)
Exercises
Starting with \texttt{RBesT}

- Start with installing \texttt{RBesT} from CRAN
 \begin{verbatim}
 R> install.packages("RBesT", dependencies=TRUE)
 \end{verbatim}
- Load the package and run your first analysis
 \begin{itemize}
 \item R> library(RBesT)
 \item R> example(gMAP)
 \end{itemize}
- Open the help for the \texttt{gMAP} command using one of
 \begin{itemize}
 \item R> ?gMAP
 \item R> help.search("gMAP")
 \end{itemize}
- Navigate to the additional help which include the vignettes
 \begin{itemize}
 \item R> help.start()
 in Rstudio you can also click on the Packages tab at the right
 \item Follow the links Packages -> RBesT -> User guides, package vignettes, …
 \item Explore the different documents
Vignette: Getting started with **RBesT (binary)**

1. Work through the vignette
 “Getting started with **RBesT (binary)**”
 Hint: You can download the R code from the help ⇒ “R code” link at the right of the overview page **Note:** Please uncomment the line `### is_CRAN <- FALSE`

2. How much is the type I error inflated for the robust MAP prior? Consider why this happens.

3. Compare operating characteristics for a robust MAP prior with 80% and 50% weight on the MAP prior.

4. Evaluate further the difference the prior on τ makes.
 Compare the $\tau \sim \text{HalfNormal}(0, 1)$ with the $\tau \sim \text{HalfNormal}(0, (1/2)^2)$ prior.
 4.1 How do the posteriors for each quantity differ (β, τ, θ^*)?
 4.2 Differences in power and type I error?
 4.3 Repeat the comparison, but only use the first 3 studies.
Probability of Success

1. Work through the probability of success material.
2. What is the probability of success for a phase III trial to be successful before initiating these based on the PoC and phase II data only?
3. How large is the probability of success for both phase III studies to be successful based on the historical data only?
Backup
Mixture Models
Estimation with Expectation-Maximization (EM)

\[
\log p(x|w, a, b) = \sum_{n=1}^{N} \log \left[\sum_{k=1}^{K} w_k p(x_n|a_k, b_k) \right]
\]

EM "trick" is to extend the likelihood

\[
p(x|w, a, b) = \int p(x, z|w, a, b) \, dz
\]

- \(x\) observed data as recorded
- \(z\) latent data, i.e. component indicator
- \((x, z)\) complete data

Example: Univariate normal

Posterior Analysis for Mixture Priors
Fixed prior weights change in the posterior

Assume a mixture prior for some parameter θ

$$p(\theta, w, a, b) = \sum_{k=1}^{K} w_k p_k(\theta, a_k, b_k)$$

for data y and likelihood $f(y|\theta)$, then the posterior is again a mixture equal to the posterior of each component and updated weights

$$p(\theta, w, a, b|y) = \sum_{k=1}^{K} w'_k p_k(\theta, a_k, b_k|y)$$

Note: The prior weights w_k, are not random (fixed) but are still updated to $w'_k = w^*_k / \sum_{k=1}^{K} w^*_k$ with

(marginal likelihood) $w^*_k \equiv w_k \int f(y|\theta) p_k(\theta, a_k, b_k) d\theta = w_k p_k(y)$
References

