Model averaging for robust extrapolation in evidence synthesis

Christian Röver¹, Simon Wandel², Tim Friede¹

¹Department of Medical Statistics,
University Medical Center Göttingen,
Göttingen, Germany

²Novartis Pharma AG,
Basel, Switzerland

December 6, 2018

This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144.
Overview

- meta-analysis & extrapolation
- NNHM, example
- informative priors, mixture priors
- example applications
- conclusions
extrapolation desirable when evidence sparse or relevance unclear: paediatric/adult applications, bridging studies,…

common situation in meta-analysis:

majority of analyses in Cochrane data base include \(\leq 3 \) studies\(^1\), many overall + subgroup analysis results

aims:

- formal utilization of related evidence
- robust procedure (no naïve, over-optimistic pooling)

Meta-analysis

The common NNHM (random-effects) model

- \(k \) studies
- estimates \(y_i \in \mathbb{R} \) (\(i = 1, \ldots, k \))
- standard errors \(\sigma_i > 0 \)
- **normal-normal hierarchical model (NNHM):**

\[
\begin{align*}
y_i|\theta_i, \sigma_i &\sim N(\theta_i, \sigma_i^2), \quad \theta_i|\mu, \tau \sim N(\mu, \tau^2) \\
\Rightarrow y_i|\mu, \sigma_i, \tau &\sim N(\mu, \sigma_i^2 + \tau^2)
\end{align*}
\]

- data: \(y_i \) (and \(\sigma_i \))
- two unknowns:
 - “effect” \(\mu \in \mathbb{R} \) (of primary interest)
 - “heterogeneity” \(\tau \geq 0 \) (between-study variance component)
investigation of efficacy of migraine treatments in children (OR > 1 indicates benefit)

desirable: RCTs with placebo control

paediatric patients: ethical concerns / feasibility

<table>
<thead>
<tr>
<th>publication</th>
<th>subjects</th>
<th>triptan</th>
<th>placebo</th>
<th>log–OR</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ueberall (1999)</td>
<td>children</td>
<td>12 / 14</td>
<td>6 / 14</td>
<td>2.079</td>
<td>[0.246, 3.913]</td>
</tr>
<tr>
<td>Hämäläinen (2002)</td>
<td>children</td>
<td>38 / 59</td>
<td>24 / 58</td>
<td>0.941</td>
<td>[0.195, 1.688]</td>
</tr>
<tr>
<td>Ho (2012)</td>
<td>children</td>
<td>53 / 98</td>
<td>57 / 102</td>
<td>−0.073</td>
<td>[−0.630, 0.485]</td>
</tr>
</tbody>
</table>

3 paediatric studies (<12yr)
Migraine example data

Triptans for headache relief in children (and adolescents)

<table>
<thead>
<tr>
<th>publication</th>
<th>subjects</th>
<th>triptan</th>
<th>placebo</th>
<th>log−OR</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämäläinen (1997b)</td>
<td>adolescents</td>
<td>7 / 23</td>
<td>5 / 23</td>
<td>0.454</td>
<td>[−0.876, 1.785]</td>
</tr>
<tr>
<td>Rothner (1997)</td>
<td>adolescents</td>
<td>113 / 226</td>
<td>46 / 74</td>
<td>−0.496</td>
<td>[−1.034, 0.041]</td>
</tr>
<tr>
<td>Winner (1997)</td>
<td>adolescents</td>
<td>111 / 222</td>
<td>32 / 76</td>
<td>0.318</td>
<td>[−0.207, 0.844]</td>
</tr>
<tr>
<td>Rothner (1999a)</td>
<td>adolescents</td>
<td>96 / 186</td>
<td>20 / 34</td>
<td>−0.292</td>
<td>[−1.033, 0.449]</td>
</tr>
<tr>
<td>Rothner (1999b)</td>
<td>adolescents</td>
<td>17 / 62</td>
<td>7 / 30</td>
<td>0.216</td>
<td>[−0.797, 1.230]</td>
</tr>
<tr>
<td>Rothner (1999c)</td>
<td>adolescents</td>
<td>23 / 66</td>
<td>14 / 36</td>
<td>−0.174</td>
<td>[−1.014, 0.666]</td>
</tr>
<tr>
<td>Winner (2000)</td>
<td>adolescents</td>
<td>243 / 377</td>
<td>69 / 130</td>
<td>0.472</td>
<td>[0.068, 0.876]</td>
</tr>
<tr>
<td>Winner (2002)</td>
<td>adolescents</td>
<td>98 / 149</td>
<td>80 / 142</td>
<td>0.398</td>
<td>[−0.076, 0.872]</td>
</tr>
<tr>
<td>Ahonen (2004)</td>
<td>adolescents</td>
<td>53 / 83</td>
<td>32 / 83</td>
<td>1.035</td>
<td>[0.406, 1.664]</td>
</tr>
<tr>
<td>Visser (2004a)</td>
<td>adolescents</td>
<td>159 / 233</td>
<td>165 / 240</td>
<td>−0.024</td>
<td>[−0.412, 0.364]</td>
</tr>
<tr>
<td>Ahonen (2006)</td>
<td>adolescents</td>
<td>71 / 96</td>
<td>35 / 96</td>
<td>1.599</td>
<td>[0.982, 2.216]</td>
</tr>
<tr>
<td>Evers (2006)</td>
<td>adolescents</td>
<td>18 / 29</td>
<td>8 / 29</td>
<td>1.458</td>
<td>[0.350, 2.565]</td>
</tr>
<tr>
<td>Rothner (2006)</td>
<td>adolescents</td>
<td>262 / 480</td>
<td>93 / 160</td>
<td>−0.144</td>
<td>[−0.506, 0.218]</td>
</tr>
<tr>
<td>Winner (2006)</td>
<td>adolescents</td>
<td>316 / 483</td>
<td>141 / 242</td>
<td>0.304</td>
<td>[−0.013, 0.621]</td>
</tr>
<tr>
<td>Callenbach (2007)</td>
<td>adolescents</td>
<td>19 / 46</td>
<td>15 / 46</td>
<td>0.375</td>
<td>[−0.477, 1.226]</td>
</tr>
<tr>
<td>Lewis (2007)</td>
<td>adolescents</td>
<td>97 / 148</td>
<td>67 / 127</td>
<td>0.533</td>
<td>[0.046, 1.019]</td>
</tr>
<tr>
<td>Winner (2007)</td>
<td>adolescents</td>
<td>82 / 144</td>
<td>79 / 133</td>
<td>−0.101</td>
<td>[−0.579, 0.377]</td>
</tr>
<tr>
<td>Linder (2008)</td>
<td>adolescents</td>
<td>383 / 544</td>
<td>94 / 170</td>
<td>0.654</td>
<td>[0.300, 1.008]</td>
</tr>
<tr>
<td>Ho (2012)</td>
<td>adolescents</td>
<td>167 / 284</td>
<td>147 / 286</td>
<td>0.300</td>
<td>[−0.031, 0.631]</td>
</tr>
<tr>
<td>Fujita (2014)</td>
<td>adolescents</td>
<td>23 / 74</td>
<td>27 / 70</td>
<td>−0.331</td>
<td>[−1.019, 0.357]</td>
</tr>
<tr>
<td>Ueberall (1999)</td>
<td>children</td>
<td>12 / 14</td>
<td>6 / 14</td>
<td>2.079</td>
<td>[0.246, 3.913]</td>
</tr>
<tr>
<td>Hämäläinen (2002)</td>
<td>children</td>
<td>38 / 59</td>
<td>24 / 58</td>
<td>0.941</td>
<td>[0.195, 1.688]</td>
</tr>
<tr>
<td>Ho (2012)</td>
<td>children</td>
<td>53 / 98</td>
<td>57 / 102</td>
<td>−0.073</td>
<td>[−0.630, 0.485]</td>
</tr>
</tbody>
</table>

3 paediatric studies (<12yr) + 20 adolescent studies (12–17yr)\(^2\)

Extrapolation
Bayesian framework

- extrapolation:
 - Bayesian methods commonly **suggested**\(^3\)
 - Bayesian methods predominant approach **in practice**\(^4\)

- obvious approaches:
 - via hierarchical models
 - via **informative prior** distribution

- here: Bayesian meta-analysis via **bayesmeta** R package\(^5\)

\(^3\) e.g.: European Medicines Agency (EMEA). Guideline on clinical trials in small populations, July 2006.
Food and Drug Administration (FDA). Leveraging existing clinical data for extrapolation to pediatric uses of medical devices - guidance for industry and food and drug administration staff. Draft guidance, June 2016.

\(^5\) http://cran.r-project.org/package=bayesmeta
Informative priors & robustness

- **danger**: posterior as simplistic prior / data “compromise”
- **desirable**: sensible behaviour in case of prior / data conflict;
in case of doubt, data should overrule prior
- **approach**: robustness via heavy-tailed mixture priors\(^6\)

- here: two parameters–
 - informative priors for effect and/or heterogeneity?
 - include further external information?\(^7\)

- in following (for simplicity):
 informative joint effect / heterogeneity prior

Robust mixture priors

Setup

- idea: prior $p(\theta)$ for children’s data as a mixture:

$$p(\theta) = (1 - w) \times p_1(\theta) + w \times p_2(\theta)$$

where

- $p_1(\theta)$ is uninformative / vague
- $p_2(\theta)$ is informative (based on adolescent data + prior p_1)
- $w \in [0, 1]$ expresses certainty about external data’s relevance

- interpretation: e.g., $w = 50%$ - -
 - same effect with probability $w = 50%$
 - separate effects with probability $(1 - w) = 50%$

- mixture setup should lead to robust behaviour in case of prior/data conflict

Robust mixture priors

Inference

- technically: **mixture prior** implies **mixture posterior**
 \(\rightarrow \) model averaging

- **posterior** again is a **mixture** of (conditional) posteriors under priors \(p_1 \) and \(p_2 \)

- **weighting** of posteriors is given through **marginal likelihoods** (Bayes factor) and weight \(w \)

- only need to determine two posteriors and Bayes factor, then re-weight

- equivalence of **meta-analytic-predictive (MAP)** and **meta-analytic-combined (MAC)** approaches simplifies computations\(^9\)

Example: children’s effect prior setup

- **vague prior** p_1:
 - effect: $\mu \sim N(0, 2^2)$
 - heterogeneity: $\tau \sim \text{halfNormal}(0.5)$
Example: children's effect prior setup

- **vague prior** p_1:
 - effect: $\mu \sim N(0, 2^2)$
 - heterogeneity: $\tau \sim \text{halfNormal}(0.5)$

- **informative prior** p_2
 (posterior from adolescent studies):
 - effect: $\mu = 0.30$ [0.07, 0.54]
 - heterogeneity: $\tau = 0.41$ [0.21, 0.65]
Example: children’s effect prior setup

- **vague prior** p_1:
 - effect: $\mu \sim N(0, 2^2)$
 - heterogeneity: $\tau \sim \text{halfNormal}(0.5)$

- **informative prior** p_2
 (posterior from adolescent studies):
 - effect: $\mu = 0.30$ [0.07, 0.54]
 - heterogeneity: $\tau = 0.41$ [0.21, 0.65]

(1 – $w = 50\%$)

(w = 50\%)

C. Röver et al.
Model averaging for robust extrapolation...
December 6, 2018
11 / 21
Example: children’s effect posterior

- based on **vague** prior p_1 (only children’s data):
 - effect: $\mu = 0.55 \ [−0.24, 1.50]$
 - heterogeneity: $\tau = 0.49 \ [0.00, 1.04]$
Example: children’s effect posterior

- based on vague prior \(p_1 \) (only children’s data):
 - effect: \(\mu = 0.55 \ [-0.24, 1.50] \)
 - heterogeneity: \(\tau = 0.49 \ [0.00, 1.04] \)

- based on **informative** prior \(p_2 \)
 (adolescents’ + children’s data):
 - effect: \(\mu = 0.33 \ [0.10, 0.56] \)
 - heterogeneity: \(\tau = 0.42 \ [0.23, 0.64] \)
Example: children’s effect posterior

- based on **vague** prior p_1 (only children’s data):
 - effect: $\mu = 0.55 \ [-0.24, 1.50]$
 - heterogeneity: $\tau = 0.49 \ [0.00, 1.04]$

- based on **informative** prior p_2
 (adolescents’ + children’s data):
 - effect: $\mu = 0.33 \ [0.10, 0.56]$
 - heterogeneity: $\tau = 0.42 \ [0.23, 0.64]$

- **Bayes factor**: 5.12

Bayes factor: 5.12
Example: children’s effect posterior

- based on **vague** prior p_1 (only children’s data):
 - effect: $\mu = 0.55 \ [−0.24, 1.50]$
 - heterogeneity: $\tau = 0.49 \ [0.00, 1.04]$

- based on **informative** prior p_2
 (adolescents’ + children’s data):
 - effect: $\mu = 0.33 \ [0.10, 0.56]$
 - heterogeneity: $\tau = 0.42 \ [0.23, 0.64]$

- Bayes factor: 5.12

Weight
- weight: 16.3%
- weight: 83.7%
Example: estimates

<table>
<thead>
<tr>
<th>publication</th>
<th>subjects</th>
<th>log–OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hämäläinen (1997b)</td>
<td>adolescents</td>
<td>0.454</td>
<td>[-0.876, 1.785]</td>
</tr>
<tr>
<td>Rothner (1997)</td>
<td>adolescents</td>
<td>-0.496</td>
<td>[-1.034, 0.041]</td>
</tr>
<tr>
<td>Winner (1997)</td>
<td>adolescents</td>
<td>0.318</td>
<td>[-0.207, 0.844]</td>
</tr>
<tr>
<td>Rothner (1999a)</td>
<td>adolescents</td>
<td>-0.292</td>
<td>[-1.033, 0.449]</td>
</tr>
<tr>
<td>Rothner (1999b)</td>
<td>adolescents</td>
<td>0.216</td>
<td>[-0.797, 1.230]</td>
</tr>
<tr>
<td>Rothner (1999c)</td>
<td>adolescents</td>
<td>-0.174</td>
<td>[-1.014, 0.666]</td>
</tr>
<tr>
<td>Winner (2000)</td>
<td>adolescents</td>
<td>0.472</td>
<td>[0.068, 0.876]</td>
</tr>
<tr>
<td>Winner (2002)</td>
<td>adolescents</td>
<td>0.398</td>
<td>[-0.076, 0.872]</td>
</tr>
<tr>
<td>Ahonen (2004)</td>
<td>adolescents</td>
<td>1.035</td>
<td>[0.406, 1.664]</td>
</tr>
<tr>
<td>Visser (2004a)</td>
<td>adolescents</td>
<td>-0.024</td>
<td>[-0.412, 0.364]</td>
</tr>
<tr>
<td>Ahonen (2006)</td>
<td>adolescents</td>
<td>1.599</td>
<td>[0.982, 2.216]</td>
</tr>
<tr>
<td>Evers (2006)</td>
<td>adolescents</td>
<td>1.458</td>
<td>[0.350, 2.565]</td>
</tr>
<tr>
<td>Rothner (2006)</td>
<td>adolescents</td>
<td>-0.144</td>
<td>[-0.506, 0.218]</td>
</tr>
<tr>
<td>Winner (2006)</td>
<td>adolescents</td>
<td>0.304</td>
<td>[-0.013, 0.621]</td>
</tr>
<tr>
<td>Callenbach (2007)</td>
<td>adolescents</td>
<td>0.375</td>
<td>[-0.477, 1.226]</td>
</tr>
<tr>
<td>Lewis (2007)</td>
<td>adolescents</td>
<td>0.533</td>
<td>[0.046, 1.019]</td>
</tr>
<tr>
<td>Winner (2007)</td>
<td>adolescents</td>
<td>-0.101</td>
<td>[-0.579, 0.377]</td>
</tr>
<tr>
<td>Linder (2008)</td>
<td>adolescents</td>
<td>0.654</td>
<td>[0.300, 1.008]</td>
</tr>
<tr>
<td>Ho (2012)</td>
<td>adolescents</td>
<td>0.300</td>
<td>[-0.031, 0.631]</td>
</tr>
<tr>
<td>Fujita (2014)</td>
<td>adolescents</td>
<td>-0.331</td>
<td>[-1.019, 0.357]</td>
</tr>
<tr>
<td>adolescents only</td>
<td></td>
<td>0.300</td>
<td>[0.066, 0.537]</td>
</tr>
<tr>
<td>Ueberall (1999)</td>
<td>children</td>
<td>2.079</td>
<td>[0.246, 3.913]</td>
</tr>
<tr>
<td>Hämäläinen (2002)</td>
<td>children</td>
<td>0.941</td>
<td>[0.195, 1.688]</td>
</tr>
<tr>
<td>Ho (2012)</td>
<td>children</td>
<td>-0.073</td>
<td>[-0.630, 0.485]</td>
</tr>
<tr>
<td>children only</td>
<td></td>
<td>0.554</td>
<td>[-0.240, 1.495]</td>
</tr>
<tr>
<td>children combined</td>
<td></td>
<td>0.338</td>
<td>[0.003, 0.875]</td>
</tr>
</tbody>
</table>

Log–OR Distribution

-1 0 1 2 3

log–OR
Example: sensitivity check

- what role does the specification of **prior weight** \(w \) play?
- \(w = 0 \) \(\Rightarrow \) ignorance of adolescent data
- \(w = 1 \) \(\Rightarrow \) complete pooling

Graph:
- standalone analysis
- complete pooling
- effect \(\mu \) (posterior median and 95% CI)
- \(p(M_1) \)
2nd example: paediatric transplantation

- effect of Interleukin-2 receptor antagonists (IL-2RA) on acute rejection reaction after liver transplantation (OR < 1 indicates benefit)
- 2 RCTs in children\(^\text{10}\), 14 in adults\(^\text{11}\). In conflict?

<table>
<thead>
<tr>
<th>publication</th>
<th>subjects</th>
<th>log–OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washburn (2001)</td>
<td>adults</td>
<td>0.000</td>
<td>[−2.869, 2.869]</td>
</tr>
<tr>
<td>Neuhaus (2002)</td>
<td>adults</td>
<td>−0.256</td>
<td>[−0.663, 0.152]</td>
</tr>
<tr>
<td>Yan (2004)</td>
<td>adults</td>
<td>−1.435</td>
<td>[−2.900, 0.030]</td>
</tr>
<tr>
<td>Boillot (2005)</td>
<td>adults</td>
<td>−0.060</td>
<td>[−0.399, 0.278]</td>
</tr>
<tr>
<td>Fasola (2005)</td>
<td>adults</td>
<td>−0.765</td>
<td>[−1.792, 0.263]</td>
</tr>
<tr>
<td>Yoshida (2005)</td>
<td>adults</td>
<td>−0.211</td>
<td>[−0.952, 0.529]</td>
</tr>
<tr>
<td>de Simone (2007)</td>
<td>adults</td>
<td>−0.264</td>
<td>[−0.978, 0.450]</td>
</tr>
<tr>
<td>Kato, cohort 1 (2007)</td>
<td>adults</td>
<td>−0.385</td>
<td>[−1.801, 1.031]</td>
</tr>
<tr>
<td>Kato, cohort 2 (2007)</td>
<td>adults</td>
<td>−0.838</td>
<td>[−2.358, 0.683]</td>
</tr>
<tr>
<td>Klintmalm (2007)</td>
<td>adults</td>
<td>−0.241</td>
<td>[−0.789, 0.308]</td>
</tr>
<tr>
<td>Schmeding (2007)</td>
<td>adults</td>
<td>0.193</td>
<td>[−0.599, 0.985]</td>
</tr>
<tr>
<td>Lupo (2008)</td>
<td>adults</td>
<td>−0.788</td>
<td>[−2.214, 0.637]</td>
</tr>
<tr>
<td>Neuberger (2009)</td>
<td>adults</td>
<td>−0.604</td>
<td>[−1.134, −0.074]</td>
</tr>
<tr>
<td>Calmus (2010)</td>
<td>adults</td>
<td>−0.016</td>
<td>[−0.671, 0.638]</td>
</tr>
<tr>
<td>adults only</td>
<td></td>
<td>−0.263</td>
<td>[−0.482, −0.053]</td>
</tr>
<tr>
<td>Spada (2006)</td>
<td>children</td>
<td>−1.258</td>
<td>[−2.517, −0.000]</td>
</tr>
<tr>
<td>children only</td>
<td></td>
<td>−1.693</td>
<td>[−2.735, −0.620]</td>
</tr>
</tbody>
</table>

2nd example: children’s effect prior setup

- **vague prior** \(p_1 \):
 - effect: \(\mu \sim N(0, 2^2) \)
 - heterogeneity: \(\tau \sim \text{halfNormal}(0.5) \)

- **informative prior** \(p_2 \)
 - (posterior from adult studies):
 - effect: \(\mu = -0.26 \ [-0.48, 0.05] \)
 - heterogeneity: \(\tau = 0.11 \ [0.00, 0.34] \)

\[
(1 - w = 50\%)
\]

\[
(w = 50\%)
\]
2nd example: children’s effect posterior

- based on **vague** prior p_1 (only children’s data):
 - effect: $\mu = -1.71$ [−2.73, −0.62]
 - heterogeneity: $\tau = 0.33$ [0.00, 0.94]

- based on **informative** prior p_2
 (adolescents’ + children’s data):
 - effect: $\mu = -0.37$ [−0.66, −0.13]
 - heterogeneity: $\tau = 0.22$ [0.00, 0.55]

- **Bayes factor**: 0.032
2nd example: children’s effect posterior

- based on **vague** prior p_1 (only children’s data):
 - effect: $\mu = -1.71 \ [\ -2.73, -0.62]$
 - heterogeneity: $\tau = 0.33 \ [0.00, 0.94]$

- based on **informative** prior p_2
 (adolescents’ + children’s data):
 - effect: $\mu = -0.37 \ [\ -0.66, -0.13]$
 - heterogeneity: $\tau = 0.22 \ [0.00, 0.55]$

- **Bayes factor**: 0.032

Bayes factor: 0.032
2nd example: estimates

<table>
<thead>
<tr>
<th>publication</th>
<th>subjects</th>
<th>log–OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washburn (2001)</td>
<td>adults</td>
<td>0.000</td>
<td>[−2.869, 2.869]</td>
</tr>
<tr>
<td>Neuhaus (2002)</td>
<td>adults</td>
<td>−0.256</td>
<td>[−0.663, 0.152]</td>
</tr>
<tr>
<td>Yan (2004)</td>
<td>adults</td>
<td>−1.435</td>
<td>[−2.900, 0.030]</td>
</tr>
<tr>
<td>Boillot (2005)</td>
<td>adults</td>
<td>−0.060</td>
<td>[−0.399, 0.278]</td>
</tr>
<tr>
<td>Fasola (2005)</td>
<td>adults</td>
<td>−0.765</td>
<td>[−1.792, 0.263]</td>
</tr>
<tr>
<td>Yoshida (2005)</td>
<td>adults</td>
<td>−0.211</td>
<td>[−0.952, 0.529]</td>
</tr>
<tr>
<td>de Simone (2007)</td>
<td>adults</td>
<td>−0.264</td>
<td>[−0.978, 0.450]</td>
</tr>
<tr>
<td>Kato, cohort 1 (2007)</td>
<td>adults</td>
<td>−0.385</td>
<td>[−1.801, 1.031]</td>
</tr>
<tr>
<td>Kato, cohort 2 (2007)</td>
<td>adults</td>
<td>−0.838</td>
<td>[−2.358, 0.683]</td>
</tr>
<tr>
<td>Klintmalm (2007)</td>
<td>adults</td>
<td>−0.241</td>
<td>[−0.789, 0.308]</td>
</tr>
<tr>
<td>Schmeding (2007)</td>
<td>adults</td>
<td>0.193</td>
<td>[−0.599, 0.985]</td>
</tr>
<tr>
<td>Lupo (2008)</td>
<td>adults</td>
<td>−0.788</td>
<td>[−2.214, 0.637]</td>
</tr>
<tr>
<td>Neuberger (2009)</td>
<td>adults</td>
<td>−0.604</td>
<td>[−1.134, −0.074]</td>
</tr>
<tr>
<td>Calmus (2010)</td>
<td>adults</td>
<td>−0.016</td>
<td>[−0.671, 0.638]</td>
</tr>
<tr>
<td>adults only</td>
<td></td>
<td>−0.263</td>
<td>[−0.482, −0.053]</td>
</tr>
<tr>
<td>Spada (2006)</td>
<td>children</td>
<td>−1.258</td>
<td>[−2.517, −0.000]</td>
</tr>
<tr>
<td>children only</td>
<td></td>
<td>−1.693</td>
<td>[−2.735, −0.620]</td>
</tr>
<tr>
<td>children combined</td>
<td></td>
<td>−1.673</td>
<td>[−2.648, −0.309]</td>
</tr>
</tbody>
</table>

prior/data conflict reflected in results
2nd example: sensitivity check

- check: effect of **prior weight** \(w \)
- \(w = 0 \) \(\Rightarrow \) ignorance of adolescent data
- \(w = 1 \) \(\Rightarrow \) complete pooling

\[
\begin{align*}
\mu & \text{(posterior median and 95\% CI)} \\
\end{align*}
\]
Variations / extensions
More than two prior components

- choice of “vague” standard deviation (here: $\sigma = 2$) is relevant (affects Bayes factor: *Lindley’s paradox*)
- may consider more than 2 prior components, e.g.:
 - common effect μ and heterogeneity τ (“complete pooling”)
 - common heterogeneity τ only (“heterogeneity pooling”)
 - common effect μ only (“effect pooling”)
 - no common parameters (“standalone analyses”)
- plausible?
- complex models may be barely distinguishable based on little data
- sparser models may be more desirable (*Ockham’s razor*)
Conclusions

- meta analyses often based on few studies (especially subgroup analyses)
- Bayesian approach formalizes otherwise often informal extrapolation / model choice; incorporates uncertainty
- transparent information flow (prior distribution, Bayes factor, ...)
- computations relatively easy using bayesmeta R package
- prior settings need to be chosen carefully
- may check sensitivity to model specifications
- model variations: mixtures of ≥ 2 components
- many generalizations possible
 (other sources of external information, “main” analysis not a meta-analysis, ...)

C. Röver, S. Wandel, T. Friede.
Model averaging for robust extrapolation in evidence synthesis.
+++ additional slides +++
Example R code

Three meta analyses

```
# main MA computations:

require("bayesmeta")
vaguepriorsd <- 2

# meta analysis for adolescents only:
bma.adol <- bayesmeta(y=logOR.adol, sigma=stdErr.adol,
                      mu.prior.mean=0, mu.prior.sd=vaguepriorsd,
                      tau.prior=function(t){dhalfnormal(t,scale=0.5)})

# meta analysis for children only:
bma.child <- bayesmeta(y=logOR.children, sigma=stdErr.children,
                       mu.prior.mean=0, mu.prior.sd=vaguepriorsd,
                       tau.prior=function(t){dhalfnormal(t,scale=0.5)})

# joint meta analysis for all patients:
bma.joint <- bayesmeta(y=c(logOR.adol, logOR.children),
                      sigma=c(stdErr.adol, stdErr.children),
                      mu.prior.mean=0, mu.prior.sd=vaguepriorsd,
                      tau.prior=function(t){dhalfnormal(t,scale=0.5)})
```
```
bayesfactor <- bma.joint$marginal / (bma.adol$marginal * bma.child$marginal)

prior.odds <- 0.5 / (1 - 0.5)

# determine posterior:
prior.odds <- prior.odds * bayesfactor
post.odds <- post.odds / (post.odds + 1)
post.prob <- post.odds / (post.odds + 1)
print(post.prob)  # =0.837

# plot posterior density:
x <- seq(-0.5, 1.0, le=200)
plot(x, (1-post.prob) * bma.child$dposterior(mu=x)
     + post.prob * bma.joint$dposterior(mu=x),
     type="l", xlab="log-OR", ylab="posterior density")

# (...)
## Simulations

Coverage, CI width; homogeneous and heterogeneous scenarios

<table>
<thead>
<tr>
<th># studies</th>
<th>weight</th>
<th>homogeneous coverage</th>
<th>homogeneous width</th>
<th>heterogeneous coverage</th>
<th>heterogeneous width</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 + 3</td>
<td>0</td>
<td>98.7 (1.59)</td>
<td></td>
<td>94.5 (1.67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>99.6 (1.29)</td>
<td></td>
<td>89.7 (1.59)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>99.5 (1.06)</td>
<td></td>
<td>81.9 (1.50)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>98.8 (0.86)</td>
<td></td>
<td>70.4 (1.38)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>97.1 (0.66)</td>
<td></td>
<td>15.6 (0.77)</td>
<td></td>
</tr>
<tr>
<td>3 + 3</td>
<td>0</td>
<td>98.7 (1.59)</td>
<td></td>
<td>94.5 (1.67)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>99.1 (1.42)</td>
<td></td>
<td>92.8 (1.61)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>99.1 (1.29)</td>
<td></td>
<td>90.0 (1.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>98.7 (1.18)</td>
<td></td>
<td>86.2 (1.48)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>98.1 (1.06)</td>
<td></td>
<td>74.9 (1.22)</td>
<td></td>
</tr>
</tbody>
</table>