Discussion

Bayesian methods in the development and assessment of new therapies

Norbert Benda

Disclaimer:
Views expressed in this presentation are the author's personal views and not necessarily the views of BfArM
Bayesian applications for many different purposes in drug development: “continuous learning”, used, e.g., for
- decision making on project and trial level (e.g. stop or continue)
 - phase I toxicity
 - phase II proof of concept
- analysis in early phases used as explorative/supportive
- missing data imputation
- non-linear models e.g. for dose-time-response / pharmacometrics
- subgroup analysis
 - borrowing strength between subpopulations
- evidence synthesis
 - use of historical data
- extrapolation

Heinz Schmidli: Bayesian applications in drug development
Ralf Bender: Applications of Bayesian methods in health technology assessment

- IQWIG policy to allow for Bayesian methods in specific settings
 - some potential room for Bayesian methods
 (when “necessary”, when frequentist methods are difficult / not available)
 - sensitivity analyses
- Bayesian meta-analyses with few trials
 - may be a compromise between FE and “hard core” RE analysis
 - FE with limitations, especially if large heterogeneity cannot be excluded
 - often heterogeneity cannot reliably be assessed
 - which prior to be used needs further scientific agreement
 - Bayesian approach require the decision on the “right” prior
Sibylle Sturtz: Meta-analysis using Bayesian methods

- overview of different methods for meta-analysis
- fixed (common) effect model may be too liberal, random effect too conservative
- between-study variance τ^2 difficult to assess with few studies
 - “support” estimation of τ by Bayesian priors
 - could be a compromise between FE and “hard core” RE analysis
 - but may also be more conservative
- few studies: results could be highly divergent between methods/priors
 - 2 studies: posterior τ similar to prior
- elicitation of prior on τ may be difficult but could be based e.g. on Cochrane database
- estimation of the treatment effect less influenced by priors
- pre-specification important
Why should/may we apply Bayesian methods?

- best use of all evidence
 - “learning” principle
- synthesis of different kinds of evidence
 - that are difficult to combine in a frequentist framework
- informed study design
- optimal decision making in drug development
 - stop, continue, accelerate, etc.
- “common scientific efforts (of all stakeholders) to generate best evidence”
- and some say: frequentist results are difficult to convey
Why (and when) should we be frequentists (in drug regulation)?

• epistemological background (theory of falsification, K. Popper, etc.)
• *Hitchen’s razor*
 • **burden of proof** lies with the one who makes the **claim** (the applicant) “What can be asserted without evidence can be dismissed without evidence”
 • there are (commercial and other) interests!
• independent (impartial) confirmation required in a pivotal trial to claim efficacy of a new drug
 • no influence of prior prejudice: *be agnostic - be impartial*
• regulators (law makers) need to control the long-term properties of the rule (the law)
 • how often do I wrongly approve a drug?
When may these principles (to use frequentist methods) not apply?

- studies that are at “sponsor’s risk”
 - e.g. proof-of-concept
- interim decisions
 - that do not influence frequentist properties
- in all cases that are not related to a claim (on drug’s efficacy) of a stakeholder with a give interest
When are these principles debatable?

- paediatric applications
 - efficacy confirmed in adults
 - extrapolate this efficacy to children
 - learn from adults to minimize the paediatric study participants
 - full vs partial vs no extrapolation
- different kinds of extrapolation
 - “enhancing” external validity
 - combined evidence vs new independent confirmation in new population
- use of historical controls / “real world data”
 - compromise between “no use” and “full use” of historical data
Specific application: Meta-analysis

- estimation of between-study variance not robust
 - due to the low number of studies
- robust estimation of a nuisance parameter τ to be supported by a given prior
 - reasonable (sensitivity) analysis to support more liberal FE analysis
 - put the FE (or common effect) assumption under stress
 - other settings using prior information on a nuisance parameter would be interesting to explore
- however: parameter τ may be important on its own terms
 - large τ may indicate different populations hampering interpretation
- low number of studies may also just lead to acknowledging that a proper conclusion cannot be made or based on a meta-analysis

RE and Bayesian MA assumption on “sampled studies” questionable
Bayesian meta-analysis: specific issues

• prior on τ affects the contribution from smaller trials
 • informative τ prior close to 0: low weight of small studies
 • informative τ prior far from 0: small and large studies almost equally weighted

• influence of the normality assumption of study effects (as in RE)

• pre-specification/elicitation of priors
 • less of an issue if different priors used as sensitivity analyses
 • sort of tipping-point analysis possible?

• frequentist operating characteristics still useful to know
 • to be evaluated for different τs
 • to be based on study sampling (may be difficult (to justify))
Bayesian meta-analysis on historical controls and extrapolation

- use of a robust prior
 - compromise between full use and no use of historical data
 - partially independent confirmation
 - but how to decide on scepticism factor ε?
 - only those settings are relevant in which a positive decision depends on the unjustifiable choice of ε
- potential lack of full pre-specification
 - planning a paediatric trial using Bayesian methods when adult data are known may already be an issue
 - retrospective evidence synthesis even more
(further) issues to be discussed

some agreement on accepting Bayesian methods on decision that are fully at sponsor's risk
• PoC, go/no go decisions, etc.
but if not
• frequentist properties / type-1 error: whether and how to evaluate?
 • a Bayesian design that respects frequentist properties is not fully Bayesian

Bayesian meta-analysis
• how to deal with divergent results depending on prior?
 • a significant result based on which prior should convince me?
• how to elicitate and agree upon the prior on τ?
• Bayesian methods used in extrapolation or to include historical controls
 • again: how to decide if results depend on the scepticism/down-weighing?
• what about Bayesian meta-analysis on safety (with reversed burden of proof)?