Joint longitudinal-failure time models for longitudinal prostate-specific antigen (PSA) and time of prostate recurrence

Donna Pauler Ankerst, Ph.D.
Associate Research Professor, Dept. of Urology, University of Texas Health Science Center at San Antonio and Research Scientist, Institute for Informatics, Biometry, Epidemiology, University of Munich

Current protocol for monitoring prostate cancer patients treated by radiotherapy for recurrence of disease is based on either the most recent prostate-specific antigen (PSA) value, or empirical summaries of the post-radiotherapy PSA sequence, such as whether or not three consecutive increases in PSA have occurred over any time interval. Joint statistical models for serial PSA and time to clinical recurrence applied to a training set of patients can alternatively provide a predicted probability of time to recurrence for a new patient based on multiple summaries of his specific PSA history. The formulation of parsimonious joint longitudinal-failure time models, Bayesian Markov chain Monte Carlo procedures for model-fitting and construction of recurrence predictions, model selection for covariates in the longitudinal and survival components of the model, and external validation methods are discussed in the context of an ongoing study comprising 5,000 prostate cancer patients treated at the University of Michigan Comprehensive Cancer Clinic, Massachusetts General Hospital and Radiation Therapy Oncology Group in Philadelphia, Pennsylvania.

References