
Bayesian Generalized linear mixed models with data missing not at

random

Overview:

• Two simple introductory examples of data missing not at random (MNAR)

• Missing mechanism and likelihood in the case of missing at random (MAR) as defined by
Rubin (1976)

• Missing mechanism and Bayesian inference in the case of MAR as defined by
Schafer(1997)

• Bayesian GLMMs with nonignorable nonresponse

• Selection model, with example

• Shared parameter model

• References
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Random sample from a Bernoulli distribution with missing data

• Let (y1, . . . , yn) an iid sample from a Bernoulli(p)

• p = E(yi) = P (yi = 1), 0 < p < 1

• m < n observations are missing:
yi ri
1 1
0 1
... ...
1 1
? 0
? 0
... ...
? 0

• We introduce indicator variables ri:

ri =

{
1 if yi is observed (reported)
0 if yi is missing (not reported)
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• The indicator variables ri are also random variables

• The missing process can be characterised through the conditional distributions of ri given
yi:

P (ri = 1|yi = 1) = α1 P (ri = 1|yi = 0) = α0

P (ri = 0|yi = 1) = 1 − α1 P (ri = 0|yi = 0) = 1 − α0

with 0 < α0, α1 < 1.

• Theorem of Bayes:

E(yi|ri = 1) = P (yi = 1|ri = 1) =
pα1

pα1 + (1 − p)α0
(1)

and

E(yi|ri = 0) = P (yi = 1|ri = 0) =
p(1 − α1)

p(1 − α1) + (1 − p)(1 − α0)
(2)

The conditional expectations in (1) und (2) are equal iff α0 = α1.
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• On the other hand

E(yi) = p = E(yi|ri = 1)P (ri = 1) + E(yi|ri = 0)[1 − P (ri = 1)] (3)

• The interesting question from a statistical point of view is: Can we estimate the
probability or expectation p from the n−m observed values?

Answer: Only if E(yi|ri = 1) = E(yi|ri = 0) in (3), that is when α0 = α1 holds, since
then: p = E(yi|ri = 1) −→ Missing (completely) at random M(C)AR

• What happens if α0 6= α1? We can only estimate

– E(yi|ri = 1)
– P (ri = 1)

by relative frequencies. But E(yi|ri = 0) is not identifiable from the observed data −→
MNAR

Example: p = 0.4, α0 = 0.5, α1 = 0.9. Then E(yi|ri = 1) = 0.55 > p −→
(
∑n−m

i=1 yi)/(n−m) (observed data) overestimates p
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Motivation for three different approaches to the problem of

MNAR data

1. We can make some vague assumption (−→ Bayes) for α0 und α1 −→ include missing
data process in the estimation procedure for p

2. We assume P (yi|ri = 0) = P (yi|ri = 1). Therefore we equate or constrain the
unidentifiable parameter to an identifiable parameter. This is essentially the idea of pattern
mixture models. Verbeke and Molenberghs (2000) gives an extensive and excellent
overview about pattern mixture models in the context of linear mixed models and provides
many references.

3. No such assumption is possible −→ Compute bounds for p

With (3) we have

pmin = E(yi|ri = 1)P (ri = 1)
︸ ︷︷ ︸

if E(yi|ri = 0) = 0

< p < E(yi|ri = 1)P (ri = 1) + [1 − P (ri = 1)]
︸ ︷︷ ︸

if E(yi|ri = 0) = 1

= pmax

Example continued: Using the concrete numbers and (3) we get

pmin = 0.36 < p < 0.36 + 0.34 = 0.7 = pmax
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This results in two sources of uncertainty for estimating p:

• Uncertainty induced by the missing data through parameters which cannot be identified
from the observed data

• Statistical uncertainty (variance) from the estimation procedure

This idea has been applied to more complex models (missing response and/or covariate
data) e.g. by

• Horowitz and Manski (2000)
• Horowitz and Manski (2001)
• Vansteelandt and Goetghebeur (2001)
• Manski (2003)
• Heumann(2003), Habilitation, Chapter 5
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Random sample from a normal distribution with missing data

• y ∼ N(0, 1)

• Missing data process is parameterised with a logistic regression model:

log (P (ri = 1|yi)/P (ri = 0|yi)) = β0 + β1yi , β0, β1 ∈ R

P (ri = 1|yi) =
exp(β0 + β1yi)

1 + exp(β0 + β1yi)

• The situation is a variant of the sample selection model (Heckman, 1976), where we use
the logit link instead of the probit link

• If the model is correctly specified (assumption of a normal distribution is correct and the
missing data process is correctly specified by the logistic model) −→ Maximum Likelihood
estimation is possible

• Example: β0 = −0.5, β1 = 2.0

Christian Heumann, Workshop on Missing Data in Köln, 3.12.2004 7
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Asymmetric treatment of missing data in regression models

• Missing response data or missing covariate data or both?

• Makes a big difference! Why?

• A regression model only specifies f(y|x; θ) while the marginal distribution of the
covariates is unspecified

• One possibility for MNAR response : provide a model for the missing data process
P (ry|y, x;ψ) and use the selection model

f(y, ry|x; θ, ψ) = P (ry|y, x; ξ)f(y|x; θ)

This has been used e.g. by Verbeke and Molenberghs (2000) for linear mixed models
(LMMs)

• If covariates x are MNAR then estimating a regression model conditional on x is
out-of-the-box possible if we use only the complete cases (CC analysis). One possible
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method is to model the joint distribution of y and x instead of the conditional distribution
of y given x:

f(y, x, rx|θ, ψ, ξ) = P (rx|y, x; ξ)f(y|x; θ)f(x|ψ)

This has been used by Ibrahim, Lipsitz and Chen (1999) for Generalised Linear Models
(GLMs)

• An interesting special case is if P (rx|y, x; ξ) = P (rx|x; ξ). Then

f(y|x, rx) = f(y|x) (4)

– A complete case analyses (CC) which indeed models f(y|x, rx = 1) gives a consistent
estimate for θ.
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Characterising the missing mechanism as introduced by Rubin

(1976), Little and Rubin (1987) in the context of likelihood

estimation

• Simplification: No distinction between response and covariates

• Split data y into the two parts y = (yobs, ymis)

• Likelihood f(y|θ)

• Missing mechanism
P (r|y; ξ) = P (r|yobs, ymis; ξ)

• Assumption: θ ∈ Θ, ξ ∈ Ξ −→ (θ, ξ) ∈ Θ × Ξ. θ and ξ are said to be distinct.

• The expression
f(r, y|θ, ξ) = f(yobs, ymis|θ)P (r|yobs, ymis; ξ)

is called likelihood of the complete data (or complete data likelihood)
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• The expression

f(r, yobs|θ, ξ) =

∫

f(yobs, ymis|θ)P (r|yobs, ymis; ξ)dymis

is called likelihood of the observed data (or observed data likelihood)

• The missing mechanism is called missing at random (MAR), if

P (r|yobs, ymis; ξ) = P (r|yobs; ξ)

does not depend on ymis.

• Then:

f(r, yobs|θ, ξ) =

∫

f(yobs, ymis|θ)P (r|yobs; ξ)dymis

= f(yobs|θ)P (r|yobs; ξ)

If we are only interested in inference about the parameter θ and under the assumption
that θ and ξ are distinct, inference can then be based on f(yobs|θ) alone and the
mechanism P (r|yobs; ξ) can be ignored. The mechanism is then called ignorable.
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Extension to Bayesian inference as introduced by Schafer (1997)

• Assumption of independent priors on θ und ξ:

π(θ, ξ) = π(θ)π(ξ)

• Posterior distribution:

π(θ, ξ|yobs, r) ∝ f(yobs, r|θ, ξ)π(θ)π(ξ)

If MAR holds:

π(θ, ξ|yobs, r) ∝ f(yobs|θ)P (r|yobs; ξ)π(θ)π(ξ)

It follows:

π(θ|yobs) ∝ f(yobs|θ)π(θ)
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• Often f(yobs|θ) is complicated compared to f(yobs, ymis|θ). Solution through Monte
Carlo techniques, e.g. data augmentation (Tanner, 1991). For s = 1, . . . , S:

– Imputation step (I–step): draw from the conditional predictive distribution

y
(s)
mis ∼ f(ymis|yobs, θ

(s))

– Probability step (P–step)

θ(s+1) ∼ π(θ|yobs, y
(s)
mis) ∝ f(yobs, y

(s)
mis|θ)π(θ)

• If S is big enough, the sequences {θ(s)} und {y(s)
mis} (after some burn-in) are draws from

the distribution π(θ|yobs) and the unconditional predictive distribution f(ymis|yobs) −→
proper imputations
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Nonignorable nonresponse

• P (r|yobs, ymis; ξ)

• Then

f(r, yobs|θ, ξ) =

∫

f(yobs, ymis|θ)P (r|yobs, ymis; ξ)dymis

can not be factored in one part which depends on θ and another part which depends on ξ.
Inference about θ can not ignore the missing data mechanism.
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Bayesian inference in generalised linear models with random

effects (GLMM) and nonignorable nonresponse

• A non Bayesian approach using Monte–Carlo EM has been introduced by Ibrahim and
Lipsitz (2001), but in detail only for the normal model

• Application in general for dependent outcomes:

– Longitudinal data (Panel data)
– Multilevel models: childs in a class, classes in a school, schools in school district,

reading competition
– Spatial and space-time models, additive models, e.g. Fahrmeir, Kneib and Lang (2003),

Kamman and Wand (2003)

• Definition of a GLMM, Stiratelli, Laird and Ware (1984), Breslow and Clayton (1993),
Fahrmeir and Tutz (2001)

– i = 1, . . . , N individuals or units
– At each individual i we observe ni measurements: response yij and a vector of

covariates, which is transformed to design vectors xij (1 × p) and zij (1 × q).
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– Distributional assumption: The distribution of yij comes from an exponential family

f(yij|θij, φ) = exp{[yijθij − b(θij)]/a(φ) + c(yij, φ)}

– Structural assumption:

µij = E(Yij|θij, φ) = b′(θij) = h(ηij) ,

or

g(µij) = ηij

where

ηij = x′ijβ + z′ijbi

A priori

bi
iid∼ N(0,D)

We call the (p× 1) vector β fixed effects and the (q × 1) vector bi the individual
specific random effects
Canonical link:

θij = ηij = x′ijβ + z′ijbi
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Example: logit link for binary data

θij = ηij = log

(
µij

1 − µij

)

– Therefore
f(yij|xij, zij; bi, β, φ)

models the conditional distribution of yij given the random effects bi
– Likelihood under the assumption of conditional independence: yij and yik, j 6= k are

conditionally independent given the random effects bi (additionally, independence
between individuals i is assumed)

L(β, b1, . . . , bN , φ|y) =
N∏

i=1







ni∏

j=1

f(yij|xij, zij; bi, β, φ)







• Bayesian inference, posterior distrubution

p(β, b1, . . . , bN , φ,D|y) ∝ L(β, b1, . . . , bN , φ|y)
︸ ︷︷ ︸

Likelihood

p(β)p(φ)

{
N∏

i=1

p(bi|D)

}

p(D)

︸ ︷︷ ︸
Prior
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• In the following: φ = 1, dependence on x and z is suppressed, flat prior for β:

p(β, b1, . . . , bN ,D|y) ∝ L(β, b1, . . . , bN , |y)
{

N∏

i=1

p(bi|D)

}

p(D)

• Choices for the prior p(D):

– Wishart distribution
– a priori independent random effect components: product of q Gamma distributions
– Log-normal distribution

bil|αl ∼ N(0, exp(αl)) l = 1, . . . , q

αl ∼ N(0, al) l = 1, . . . , q, al fixed constant .

• Posterior distribution with log-normal prior

p(β, b1, . . . , bN , D|Y ) ∝ L(β, b1, . . . , bN |Y )

{
N∏

i=1

p(bi|α)

}

p(α|a) (5)

Christian Heumann, Workshop on Missing Data in Köln, 3.12.2004 19



with α = (α1, . . . , αq), a = (a1, . . . , aq).

• Example: model with random intercept: zit = 1, q = 1, α, a. Prior:

{
N∏

i=1

p(bi|α)

}

p(α|a) =

=

{
N∏

i=1

1
√

2π exp(α)
exp

[

−1

2

b2i
exp(α)

]}

1√
2πa

exp

(

−1

2

α2

a

)

= (2π exp(α))
−

N
2

{
N∏

i=1

exp

[

−1

2

b2i
exp(α)

]}

(2πa)−
1
2 exp

(

−1

2

α2

a

)

(6)
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Nonignorable missing: selection model

• Focus on one subject i

• Density given bi in the case of complete data

f(yi|β, bi,D) =

ni∏

j=1

f(yij|β, bi) ,

• Selection model:
f(ri|yi, γ)

ri = (ri1, . . . , ri,ni
)

• Density of yi, ri and bi:

f(yi, ri, bi|β, γ,D) = f(yi|β, bi)p(bi|D)f(ri|yi, γ) .

Partition yi in an observed and a missing part

yi = (yi,o, yi,m) ,
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where yi,o(bs) and yi,m(is) have dimensions no
i und nm

i with no
i + nm

i = ni

• Concrete pattern is not mentioned in the notation. Example: Let ni = 3. No distinction
between the patterns r = (0, 1, 0) and r = (1, 0, 0). In this case no

i = 1 and nm
i = 2.

• With partitioned yi:

f(yi,o, yi,m, ri, bi|β, γ,D)

=







no
i∏

jo=1

f(yijo|β, bi)







︸ ︷︷ ︸

lik. contr. of obs. data







nm
i∏

jm=1

f(yijm|β, bi)







︸ ︷︷ ︸

lik. contr. of missing data

×

p(bi|D)
︸ ︷︷ ︸

random effect

f(ri|yi,o, yi,m, γ)
︸ ︷︷ ︸

missing model

.

• Conditional predictive distribution of the missing data, yim, given the observed data and
the parameters is proportional to the joint density:

f(yi,m|yi,o, ri, bi;β, γ,D)
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∝







no
i∏

jo=1

f(yijo|β, bi)













nm
i∏

jm=1

f(yijm|β, bi)






p(bi|D)f(ri|yi,o, yi,m, γ)

∝







nm
i∏

jm=1

f(yijm|β, bi)






f(ri|yi,o, yi,m, γ)

• Imputation step: draw from

f(yi,m|yi,o, ri, bi;β, γ,D) ∝







nm
i∏

jm=1

f(yijm|β, bi)







︸ ︷︷ ︸

lik. contrib. of missing data

f(ri|yi,o, yi,m, γ)
︸ ︷︷ ︸

missing model
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Algorithm

Repeat for s = 1, . . . , S:

• Imputation step (I-step): replace the missing values by drawing from the conditional
predictive distribution for all i = 1, . . . , N

y
(s)
im ∼ f(yi,m|yi,o, ri, b

(s)
i ;β(s), γ(s),D(s))

• Probability step (P-step): Given the filled in and now complete data draw new parameters
from the posterior distribution

(β, b1, . . . , bN , D, γ)
(s+1) ∼ p(β, b1, . . . , bN , D, γ|yo, y

(s)
m )

with

p(β, b,D, γ|yo, ym, r)

∝ L(β, γ, b(D)|yo, ym, r)

{
N∏

i=1

p(bi|D)

}

p(D)p(β)p(γ) ,
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where

L(β, γ, b(D)|yo, ym, r) =
N∏

i=1

f(yi,o, yi,m|β, bi)f(ri|yi,o, yi,m, γ)

is the likelihood of the completed data.
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Drawing from the posterior distribution

• Duane, Kennedy, Pendleton and Roweth (1987), Neal (1993): Hybrid Monte Carlo (HMC)
algorithm

• Metropolis algorithm

• Uses the gradient of the log-posterior distribution

• Simultaneous update of all parameters, including the random effects (contrary to Gibbs
sampling or single site Metropolis)

• One additional auxiliary variable for each parameter

• Advantage: suppresses random walk behaviour of usual Metropolis algorithms and is
therefore more efficient

• Performance in simulation studies was good in general, but problems occur if the
covariates are scaled extremely different (standardisation can help)
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Application (not really): Longitudinal study, Ohio children data

• Analysed e.g. by Zeger, Liang and Albert (1988) by GEE, and by Fahrmeir and Tutz
(2001) as GLMM with random intercept.

• N = 537 childs were examined at the ages of 7, 8, 9, and 10 years (ni = const = 4)
whether the suffer from a respiratory infection (yij = 1) or not (yij = 0), j = 1, 2, 3, 4.

• Primary interest was in the effect of the covariate xsmoking
ij :“smoking behaviour of the

mother“ (1 = Mother smokes, −1 = Mother doesn’t smoke), which is not time varying:

xsmoking
ij = xsmoke

i

• Generate missing data according to the model

logitP (rij = 1|yij, x
smoking
i ) = γ0 + γ1yij + γ2x

smoking
i

• I.e.: γ0 = 1, γ1 = −1, γ2 = −1, that is the probability of observing a response is highest
if the mother doesn’t smoke and the child has no respiratory infection.
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• Results for one run: From 2148 observations, 610 (28%) are missing

Par. Gauss–Hermite∗ HMC HMC with missing
(m = 10) Response

βrauchen 0.19 (0.11) 0.19 (0.14) 0.20 (0.21)
σb 2.14 (0.20) 2.19 (0.18) 2.11 (0.25)
γ0 — — 0.97 (0.10)
γ1 — — -0.93 (0.35)
γ2 — — -0.92 (0.05)

∗ Source: Fahrmeir and Tutz (2001), Chapter 7
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Two other runs with informative priors on γ1 and γ2

• Simulation 1: p(γ1) = N(0, 1), p(γ2) = N(0, 1)
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• Simulation 2: p(γ1) = N(0, 0.1), p(γ2) = N(0, 5)
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Parameter estimates in the two runs

Simulation 1:

Smoke: 0,2193 (0,2009)

log(variance): 1,4383 (0,2457)

gamma0: 0,9871 (0,0955)

gamma1: -1,2129 (0,3277)

gamma2: -0,8976 (0,0541)

Simulation 2:

Smoke: 0,0455 (0,1958)

log(variance): 1,4531 (0,2574)

gamma0: 0,8629 (0,0666)

gamma1: -0,623 (0,2626)

gamma2: -0,8853 (0,0522)

The estimate for β(Smoke) is shrunken to 0 using a prior for γ1 which is more concentrated
around zero (supports the MAR assumption)
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Some remarks

• In the model

logitP (rij = 1|yij, x
smoking
i ) = γ0 + γ1yij + γ2x

smoking
i

is implicitly assumed, that missing does not depend on neither whether missing has
occured (or not) at other time points nor on the response at other time points.

• This type of models is called outcome dependent missing models

• In general the full joint distribution of the missing indicators has to be modeled, e.g. by a
sequence of univariate conditional distributions in the context of longitudinal data

• Special attention has to be given to different data situations:

– Intermittent missing or only drop out
– Equidistant time points or unequally spaced time points
– Clustered data
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• Models of the type

logitP (rij = 1|yij, x
smoking
i ) = γ0 + γ1E(yij) + γ2x

smoking
i

would also be possible. The assumption of distinctness is violated.
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Shared parameter models

• Shared parameter models are another example for models where the assumption of
distinctness (independence of the priors of the data model and the missing model) is
violated

• Shared parameter models have been proposed e.g. by Have, Kunselman, Pulkstenis and
J.R. (1998), but not in a Bayesian version

• Example:

Data model:
Yij|b0i, b1i ∼ N(β0 + bi0 + (β1 + bi1)tij, σ

2)

where tij are the times of measurement.

Missing model:

logitP (rij = 1|xij, zij, γ, bi0, bi1) = γ0 + γ
1
2
1bi1 + x′ijγ
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• Interpretation in the example: probability that the response is observed is (ceterus paribus)
higher for individuals with a high individual random slope if γ1 > 0.
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The missing data problem in a wider context

• Causal inference with (and without?) counterfactual outcomes, potential outcomes

• Heterogeneous treatment effects, e.g. to control the efficiency of employments incentives.

• Randomised clinical studies: drop-out plus non-compliance

People working on such topics in the econometric community include e.g.: Angrist, Heckman,
Imbens, Vytlacil
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