Sie sind hier: Arbeitsgruppen / Bayes Methodik / Workshops / 2014 Dortmund




Workshop "Algorithms for Bayesian inference for complex problems"

Workshop of the working group Bayes methods (IBS-DR) and SFB876 Providing information by resource-contrained data analysis

Dortmund, December 5, 2014

(TU Dortmund University, Room OH12/1.056)



09:10-11:20D. Prangle (University of Reading): Approximate Bayesian Computation[abstract]
11:20-12:00C. Vonderach (Forest Research Institute Baden-Württemberg, Freiburg): Estimating the distribution parameters of harvested stock from assortments via Approximate Bayesian Computation[abstract]
13:15-13:55C. Röver (Universität Göttingen): Implementing discrete approximations to continuous mixture distributions[abstract] [slides]
13:55-14:35H. Schmidt, G. Nehmiz (Boehringer Ingelheim, Biberach): Random-effects meta-analysis of studies of binary outcomes: Comparison of frequentist, MCMC and INLA methods with data on exacerbation in COPD patients[abstract] [slides]
14:35-15:15D. Wollschläger (Universität Mainz): A Bayesian approach to estimate Poisson excess relative risk models: Analysing the A-bomb survivors lifespan study with STAN[abstract]
15:30-16:10L. Geppert (TU Dortmund): Random projections for Bayesian regression[abstract]
16:10-16:30J. Rathjens (TU Dortmund): Bayesian hierarchical regression via subspace embeddings[abstract]
16:30-16:50T. Treppmann (TU Dortmund): Integration of multiple genomic data sources in a Bayesian proportional hazards model with variable selection[abstract]